
H.A. Esfeden Spring 2019

 1

CS161 - Homework 3

DUE 11:59 PM Monday, May 27, 2019 (Please Submit to iLearn)!

1. Consider the following loop.

loop: lw r1, 0(r1)

 and r1, r1, r2

 lw r1, 0(r1)

 lw r1, 0(r1)

 beq r1, r0, loop

Assume that perfect branch prediction is used (no stalls due to control
hazards, we can run lw right after beq), branches resolve in the MEM stage,

and that the pipeline has full forwarding support. Also assume that many
iterations of this loop are executed before the loop exits.

1.1 Show a pipeline execution diagram for the third iteration of this loop,
from the cycle in which we fetch the first instruction of that iteration up to
(but not including) the cycle in which we can fetch the first instruction of
the next iteration. Show all instructions that are in the pipeline during
these cycles (not just those from the third iteration, but also the tail end of
the second iteration).

1.2 How often (as a percentage of all cycles) do we have a cycle in which
all five pipeline stages are doing useful work?

2. This exercise is intended to help you understand the relationship between
control hazards and branch execution in a pipelined processor. In this
exercise, we assume that the following MIPS code is executed on a pipelined
processor with a 5-stage pipeline, full forwarding, and a predict-taken branch
predictor:

 lw r2, 0(r1)

label1: beq r2, r0, label2 # not taken once, then taken

 lw r3, 0(r2)

 beq r3, r0, label1 # taken

 add r1, r3, r1

label2: sw r1, 0(r2)

H.A. Esfeden Spring 2019

 2

2.1 Draw the pipeline execution diagram for this code, assuming
branches execute in the ID stage (means resolve in the EX stage).
Assume there is a branch target buffer so that we know the branch target
address during the fetch stage.

2.2 Draw the pipeline execution diagram for this code, assuming that
branches execute in the EX stage (means resolve in the MEM stage).
Assume there is NO branch target buffer.

3. The importance of having a good branch predictor depends on how often
conditional branches are executed. Together with branch predictor accuracy,
this will determine how much time is spent stalling due to mispredicted
branches. In this exercise, assume that the breakdown of dynamic instructions
into various instruction categories is as follows:

Also, assume the following branch predictor accuracies:

3.1 Stall cycles due to mispredicted branches increase the CPI. What is
the extra CPI due to mispredicted branches with the always-taken
predictor? Assume that branch outcomes are determined in the EX
stage, that there are no data hazards, and that no delay slots are used.

3.2 Repeat 3.1 for the "always-not-taken" predictor.

3.3 Repeat 3.1 for the 2-bit predictor.

4. This exercise examines the accuracy of various branch predictors for the
following repeating pattern (e.g., in a loop) of branch outcomes: T, NT, T,
T, NT

4.1 What is the accuracy of always-taken and always-not-taken
predictors for this sequence of branch outcomes?

4.2 What is the accuracy of the two-bit predictor for the first 4 branches in
this pattern, assuming that the predictor starts off in the strongly predict
not taken?

4.3 What is the accuracy of the two-bit predictor if this pattern is repeated
forever?

