
H.A. Esfeden Spring 2019

 1

CS161 - Homework 2

DUE Monday, May 6, 2019 IN CLASS!

1. The basic single-cycle MIPS implementation, shown in Figure 1 on page 4,
can only implement some instructions.
New instructions can be added to an existing Instruction Set Architecture
(ISA), but the decision whether or not to do that depends, among other things,
on the cost and complexity the proposed addition introduces into the
processor datapath and control. The first three problems in this exercise refer
to the new instruction:

Instruction: LWI Rt, Rd(Rs)

Interpretation: Reg[Rt] = Mem[Reg[Rd] + Reg[Rs]]

Assume that this instruction is represented as an R-type instruction (unlike
LW).

a. Which existing blocks (if any) can be used for this instruction? Blocks
refer to any data path component, such as registers, ALUs, muxes, etc.

b. Which new functional blocks (if any) do we need for this instruction? If
you need new functional blocks, please add them to the exiting data path
in Figure 1.

c. What new signals do we need (if any) from the control unit to support
this instruction? If you need new signals, please extend the control table
in Figure 1.

2. Problems in this exercise assume that logic blocks needed to implement a
processor's datapath have the following latencies:

a. If the only thing we need to do in a processor is fetch consecutive
instructions, what would the cycle time be? Hint: Identify the critical path.

b. Now let’s design a datapath similar to Figure 1, but for a processor
that only has one type of instruction: unconditional PC-relative branch.
(Essentially, a branch instruction that is always true. Unlike Jump which
uses absolute addressing, branches use PC-relative addressing.)
Assume your new datapath is streamlined and only include the logic
blocks required to support this instruction only. (Blocks not used can be
eliminated.) What would the cycle time be if you designed this datapath?

H.A. Esfeden Spring 2019

 2

c. Repeat part b, but this time we need to support only conditional PC-
relative branches (i.e. your normal branch instruction).

3. For the problems in this exercise, assume that there are no pipeline stalls
and that the breakdown of executed instructions is as follows:

a. In what fraction of all cycles is the data memory used?

b. In what fraction of all cycles is the input of the sign-extend circuit
needed? What is this circuit doing in cycles in which its input is not
needed?

4. In this exercise we examine in detail how an instruction is executed in a
single-cycle datapath. Problems in this exercise refer to a clock cycle in which
the processor fetches the following instruction word:

10101100011000100000000000010100

which is SW r2, 20(r3)

Assume that data memory is all zeros and that the processor's registers have
the following values at the beginning of the cycle in which the above
instruction word is fetched:

a. In Figure 2 on page 5, what are the outputs of the sign-extend and the
jump "Shift left 2" unit (the top one) for this instruction word?

b. What are the values of the ALU control unit's inputs for this
instruction? (What is ALUOp[1-0] and Instruction[5-0]?)

c. What is the new PC address after this instruction is executed?
Highlight the path through which this value is determined.

d. For each Mux, show the values of its data output during the execution
of this instruction and these register values.

e. For the ALU and the two add units, what are their data input values?

f. What are the values of all inputs for the "Registers" unit?

5. Add an addi instruction the multi-cycle: Now we wish to add the instruction

addi (add immediate). Add any necessary changes to the datapath and to the

control signals. Show the modification required to the state machine below to

support addi.

H.A. Esfeden Spring 2019

 3

PCWrite

PCSource = 10

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCWriteCond

PCSource = 01

ALUSrcA =1

ALUSrcB = 00

ALUOp= 10

RegDst = 1

RegWrite

MemtoReg = 0

MemWrite

IorD = 1

MemRead

IorD = 1

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

RegDst = 0

RegWrite

MemtoReg =1

ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

MemRead

ALUSrcA = 0

IorD = 0

IRWrite

ALUSrcB = 01

ALUOp = 00

PCWrite

PCSource = 00

Instruction fetch
Instruction decode/

register fetch

Jump

completion

Branch

completionExecution

Memory address

computation

Memory

access

Memory

access R-type completion

Write-back step

 (O
p = 'LW') o

r (O
p = 'SW') (O

p = R-ty
pe)

(O
p

=
'B

E
Q

')

(O
p
 =

 '
J
')

 (O
p = 'S

W
')

(O
p

 =
 'L

W
')

4

0
1

9862

753

Start

H.A. Esfeden Spring 2019

 4

Figure 1: Single Cycle CPU

H.A. Esfeden Spring 2019

 5

Figure 2: Single Cycle with Jump Support

