
In-Register Parameter Caching for Dynamic Neural
Nets with Virtual Persistent Processor Specialization

Farzad Khorasani†
Tesla, Inc.

Palo Alto, CA, USA
fkhorasani@tesla.com

Hodjat Asghari Esfeden
Department of Computer Science
University of California Riverside

Riverside, CA, USA
hasgh001@ucr.edu

Nael Abu-Ghazaleh
Department of Computer Science
University of California Riverside

Riverside, CA, USA
naelag@ucr.edu

Vivek Sarkar
School of Computer Science

Georgia Institute of Technology
Atlanta, GA, USA
vsarkar@gatech.edu

Abstract—Dynamic neural networks enable higher represen-
tation flexibility compared to networks with a fixed architecture
and are extensively deployed in problems dealing with vary-
ing input-induced network structure, such as those in Natural
Language Processing. One of the optimizations used in training
networks is persistency of recurrent weights on the chip. In
dynamic nets, a possibly-inhomogeneous computation graph for
every input prevents caching recurrent weights in GPU registers.
Therefore, existing solutions suffer from excessive recurring
off-chip memory loads as well as compounded kernel launch
overheads and underutilization of GPU SMs.

In this paper, we present a software system that enables
persistency of weight matrices during the training of dynamic
neural networks on the GPU. Before the training begins, our ap-
proach named Virtual Persistent Processor Specialization (VPPS)
specializes a forward-backward propagation kernel that contains
in-register caching and operation routines. VPPS virtualizes
persistent kernel CTAs as CISC-like vector processors that can
be guided to execute supplied instructions. VPPS greatly reduces
the overall amount of off-chip loads by caching weight matrices
on the chip, while simultaneously, provides maximum portability
as it does not make any assumptions about the shape of the given
computation graphs hence fulfilling dynamic net requirements.
We implemented our solution on DyNet and abstracted away
its design complexities by providing simple function calls to
the user. Our experiments on a Volta micro-architecture shows
that, unlike the most competitive solutions, VPPS shows excellent
performance even in small batch sizes and delivers up to 6x
speedup on training dynamic nets.

Index Terms—GPU, Deep Learning, Neural Network, Dynamic
Neural Network, Persistent, Specialization, Register

I. INTRODUCTION

With the availability of very large data sets, recent years
have seen a revitalization of interest in the use of neural net-
works for various Machine Learning fields such as computer
vision [1], speech recognition [2], and Natural Language Pro-
cessing [3]. Training deep neural networks using large data sets
is a compute-intensive and time-consuming process. Typically
GPUs are used to accelerate the training by providing massive
compute parallelism. Training neural nets usually includes
many iterations of feeding inputs to the network and extracting
the gradients using backpropagation to make model parameters

†This work was done while the author was at Georgia Tech.

converge to the desired answer. The network architecture is
commonly represented as a computation graph in which nodes
stand for the operations and edges connecting the nodes show
the flow of the data (tensors).

An important class of neural networks is dynamic neural
nets; as opposed to more traditional static networks, the com-
putation graph in these problems may change for every given
input. For example, this change can be due to different input
sizes, such as in Long Short-Term Memory (LSTM) [4], or due
to variable network structures that different inputs create, such
as in tree-structured LSTM [5] networks. The dynamic nature
of the neural network provides Machine Learning researchers
with model specification freedom.

From a computational perspective, however, dynamic neural
networks complicate or even inhibit applying a body of
GPU optimizations that are often critical for improving the
performance of static networks. One such optimizations is on-
chip persistence of recurrent weights. In particular, Persistent
RNN [6] exploits caching weight matrices for a Recurrent
Neural Net (RNN) on-chip inside the GPU’s fast and large
register file to eliminate the recurring cost of off-chip loads
via persistent threads [7]. However, Persistent RNN assumes a
static structure of the computation, including pre-determined
placement of inputs as well as computation graph nodes.
If the way in which input tensors and parameters mix in
the network changes across inputs, Persistent RNN cannot
be applied. This is in contrast with the nature of dynamic
nets where every input may result in a computation graph
with a different shape. Moreover, even if the operation set is
predictable, Persistent RNN has to be specifically re-crafted
by an expert to be applicable for every RNN variation (for
example, as in GRU [8]). If a user specifies a custom RNN
architecture, this technique would not be readily applicable.

To enable in-register parameter caching (i.e., persistence)
for dynamic neural networks, we propose a software system
named Virtual Persistent Processor Virtualization (VPPS).
Prior to training, our solution Just-In-Time (JIT) compiles a
single forward-backward kernel specialized for caching the
given model parameters. For every forward-backward pass
over multiple possibly-dissimilar computation graphs, VPPS



generates a script that guides the execution of Cooperative
Thread Arrays (CTAs) within the generated kernel. By al-
lowing the parameters of the given model to stay on chip
throughout forward and backward propagation for an input
batch, our design eliminates the cost of fetching recurring
weight matrices from the off-chip DRAM. When constructing
the single kernel that is launched for every forward-backward
pass, we utilize the information about model parameters to i)
distribute them across register file of SMs, and ii) specialize
matrix operations, such as weight matrix multiplication with a
vector. This JIT compilation of the kernel happens only once
before training loop, and is necessary due to literal indexing
of registers within the kernel binary.

Since the computation graph shape can potentially be dif-
ferent for every input, in the kernel every persistent CTA
is treated as a virtual CISC-like vector processor capable of
executing instructions according to its supplied script. VPPS
encodes the operations within batches of input graphs at
the host (CPU) side, packages them, and supplies them to
the kernel via a host-to-device memory copy. Each virtual
processor receives its exclusively assigned set of instruc-
tions, interprets them, and executes the operations using its
threads accordingly. This scheme not only provides maximum
portability as it makes no assumption about the structure of
computation graphs in the input batch, but it also eliminates
the overhead associated with launching numerous kernels by
enabling the execution of all the operations in the forward
and backward pass as well as updating the parameters with
collected gradients using only one CUDA kernel invocation.

Similar to on-the-fly operation batching [9], multiple dissim-
ilar computation graphs can be fed to the framework together
for training. This ability in fact provides virtual processors
with more task parallelism to exploit. We implemented our
design in DyNet [10] and automated all parts of it as a C++
library. An end-user can essentially benefit from our solution
using only two calls. The first call is outside the training
loop to pass the information about the model parameters,
and results in JIT compilation of the CUDA kernel using
the Nvidia Runtime Compiler (NVRTC) behind the scene.
The second call is within the training loop, and is performed
for every batch of computation graph. Our implementation
autonomously carries out script generation and transfer, as
well as the kernel launch. As opposed to the state-of-the-art
solution [9], our approach delivers excellent performance even
with small batches.

This work makes the following contributions.

• We propose Virtual Persistent Processor Virtualization
(VPPS), a software technique to enable in-register
caching of model’s recurring weight matrices in dynamic
neural nets and thereby greatly reduce the overall amount
of DRAM load requests.

• We discuss efficient implementation of VPPS mechanics,
including parameter distribution across GPU SMs, kernel
specialization, virtualizing persistent CTAs as CISC-like
vector processors, and script generation and execution.

We also present a set of optimizations to enhance the
concurrency.

• We automated VPPS as a C++ software library integrated
with DyNet that abstracts away inner details of our
proposal. In comparison with the state-of-the-art solution,
VPPS provides up to a 6� performance boost in training
throughput.

The rest of the paper is organized as follows. Section II
gives a background on dynamic neural nets and persistency of
recurrent model parameters and motivates our solution. Sec-
tion III elaborates VPPS. We present experimental evaluations
in Section IV. Section V discusses related work and Section VI
concludes the paper.

II. BACKGROUND AND MOTIVATION

Training neural nets is an iterative procedure that includes
visiting a training set multiple times. During each visit (epoch),
one element or a batch of elements in the training set is
fed to the network to produce their corresponding predic-
tions. These predictions are contrasted against their respective
correct answers using a loss function (negative softmax log
likelihood for instance). The loss, which indicates the quality
of the predictions, is backpropagated through the network to
collect the gradients. Updating model parameters with their
respective gradients enables the model to gradually enhance
the accuracy of its prediction. To systematically perform the
training, a specified neural network is usually transformed
into a directed acyclic computation graph, where nodes denote
operations and edges denote arrays of (typically) floating point
values representing the usage of the content generated by the
source node as the input for the destination node.

Dynamic neural networks. Dynamic nets are a class of
neural networks for which the architecture of the network,
and the resulting computation graph depend on the input, and
hence, may change from one training input to another. In
other words, while the parameters of the model, which are
its being-learned pieces, are reused for computation graphs
across different input instances, the set of operations tensors
have to go through depends upon the input as specified by
the user. Figure 1 shows an example of such network, from
Tree-Structured Long Short-Term Memory (LSTM) Sentiment
Analyzer [5], [10] application, for two inputs unrolled over
time. In this example, input word vectors are fed to the
LSTM [4] and output vectors produced by the LSTM instances
are mixed based on the parse tree of the sentences. Note that
depicted LSTMs in Figure 1 share the same parameter set.
Clearly, different input sentences have different parse trees,
and therefore, different network architectures; consequently,
they induce computation graphs with different shapes. The
emergence of such dynamic neural nets has given rise to the
popularity of frameworks such as Chainer [11], PyTorch [12]
and DyNet [10] that can construct the computation graph on-
the-fly for every input, which is in contrast with the approach
in frameworks such as TensorFlow [13] or Caffe [14] that
relies on static definition of the network architecture.



(a) (b)

Fig. 1. Two example input sentences creating different network architectures
in the Tree-Structured LSTM Sentiment Analyzer application [5], [10], which
aims to classify the connotation of the sentence as positive or negative.

On-Chip Parameter Persistency.Within the computation
graph induced by one input or a batch of inputs, model
parameters in the form of weight matrices are usually used
a number of times for multiplying with the input vectors or
with the intermediate tensor vectors. In frameworks such as
DyNet and PyTorch, upon visiting every multiplication node
that uses these matrices, the weights have to be fetched from
GPU's off-chip DRAM to carry out the operation. Repeated
off-chip loads of these weight matrices, however, account for
the majority of global memory loads during training, as shown
in Figure 2. The recurrent nature of such operation hints an
opportunity to cache the model parameters on the chip in
order to avoid excessive memory accesses and to boost the
performance; specially when neural net workloads are mostly
memory-bound [15].

Diamos et al. [6] suggested utilizing GPU register �le
to cache recurrent weight matrices on chip when training a
model using vanilla RNNs. Not only registers have the highest
access bandwidth and lowest access latency compared to their
most competitive on-chip resource (shared memory), but also
register �le is the largest memory on SM. Persistent RNN
follows persistent threads [7] programming style where enough
number of CTAs occupy all the SMs while task decomposition
is handled within a single kernel, which, in the case of
Persistent RNN, disallows register �le content invalidation as
a side-effect of kernel relaunch. In Persistent RNN, a weight
matrix with a �xed size is fetched and distributed across
register �le of GPU SMs1. The kernel utilizes these cached
elements to perform the recurrent multiplication of the matrix
with given vectors. Persistent RNN can also be viewed as a
special form of kernel fusion cognizant of the model parameter
reuse.

The challenges of having both.As we mentioned, the reg-
ister �le content is invalidated upon kernel termination. This
makes it necessary for the set of operations in-between weight
matrix visits to be executed within the same kernel. As a
result, Persistent RNN requires a pre-determined computation
procedure. In other words, the shape of the computation graph

1This observation in fact nicely �ts in with the existing trend on the
collective size of GPU register �le. While largest Pascal chip (GP100) had 56
SMs, the currently largest Volta chip (GV100) has 80 SMs, giving a total of
20 MB of on-chip storage capacity. The overall number of registers on GPUs
is expected to grow even more with Multi-Chip Module GPUs [16].

Fig. 2. Averaged distribution of off-chip DRAM loads measured for training
different dynamic neural net applications in DyNet [10]. Training settings and
benchmarks are the same as those discussed in Section IV.

has to be known ahead of time or repeat a speci�c pattern. This
is in contrast with the nature of dynamic nets where the set
of computation graph operations does not necessarily follow
a pattern and the graph's shape may change across inputs.
Clearly, one cannot afford paying the cost of compiling a
special CUDA kernel for every encountered computation graph
at runtime due to the relatively long compilation time.

In addition, caching into an SM register �le requires explicit
architected register index addressing within the kernel. Essen-
tially the compiler has to be able to realize what speci�c reg-
ister in the kernel binary to use for storing a speci�c element
of the weight matrix. Therefore, not only the declaration of
register arrays that are supposed to hold parameters has to have
a size known at kernel compile time, but also all the references
to the content of these arrays have to have literal indices. If any
of these two conditions are not met, CUDA compiler de�nes
the array as a thread-private local memory region that, instead
of living inside the physical registers, resides inside the off-
chip DRAM and may be cached in L1 and L2. This makes
every form of neural net with recurrent weights—assuming it
is describable as a repeating computation pattern—require an
expert developer to design the persistent kernel for.

State-of-the-art work. The focus of the research commu-
nity for optimizing GPU performance for dynamic nets so far
has revolved around enabling mini-batching. While in static
networks multiple inputs can be simply packed together to
create tensors with higher order and increase data parallelism,
this is not trivially achievable for dynamic nets. In a group
of existing frameworks such as PyTorch [12] where mini-
batching is manual, by default a dynamic neural net may
require online learning, and therefore, invoke one kernel per
operation node even if the input tensor size for the node is
small and the kernel is extremely short-lived. This results in
underutilization of available resources leaving a great number
of SMs unoccupied. Plus, the kernel preparation overhead for
the CPU and the kernel launch overhead for the GPU are
comparable to the kernel duration when it is short-lived. These
overheads add up to the overall training duration proportional
to the frequency of such nodes and degrade the performance.

To overcome this issue, TensorFlow Fold [17] and on-the-
�y operation batching [9] implemented in DyNet [10] have
enabled dynamic batching of similar operations in concurrent
and potentially-dissimilar computation graphs. Although these
mini-batching solutions reduce the multiple kernel launch
overhead and underutilization of SMs, there is no support



Fig. 3. An overview of our solution: Virtual Persistent Processor Specializa-
tion (VPPS).

for persistency of recurring model parameters. The lack of
this feature leads to wasting a large portion of computation
time on the latency of excessive off-chip memory loads. Also,
these works require very large batch sizes to saturate the
GPU resources, which can lead to convergence instability [18],
poorer generalization [19], and lower accuracy.

Above discussion motivates the need for a solution that
enables in-register parameter persistency in dynamic training
environments. Since speci�cation of computation graphs for a
batch of inputs happens at runtime and processing these graphs
will account for the training time, any such performance-
oriented solution must avoid overheads that can cancel out
or exceed provided bene�ts.

III. V IRTUAL PERSISTENTPROCESSORSPECIALIZATION

In this Section, we present our solutionVirtual Persistent
Processor Specialization(VPPS) that allows caching of model
parameters onto registers during training an input batch in
dynamic neural networks. Our solution has two parts that work
in tandem. The �rst part constructs the source for the forward-
backward propagation GPU kernel using model parameters
and JIT compiles it at run time. The second part generates
the script for the given input batch, transfers it to the device
DRAM and executes the kernel accordingly. While the �rst
part runs only once for a given model, the second part is
executed for every given input batch of possibly-dissimilar
computation graphs. Figure 3 presents an overview of our
method. In this section, we elaborate on the mechanics of
each part separately.

A. Forward-Backward Kernel Specialization

Before initiating the training loop, our framework needs
to construct the forward-backward GPU kernel. For a given
training batch, this kernel will solely be responsible for
carrying out forward propagation, backward propagation and
parameter update all in one invocation. Since parameters of
the model are going to be cached within the register �le, it
is necessary for the kernel to bespecializedand compiled
for the given parameters dynamically at run time in order
to enable static register indexing. Our design assembles a
string of characters containing the CUDA C++ source for the
kernel and its required functions, and supplies it to the Nvidia

Fig. 4. An example visualizing the round-robin assignment of two weight
matrices into register partitions in different CTAs. The example assumes there
are 4 CTAs in total, the width of CTAs is 128, and the partition size is 1024
(8 thread registers per partition).

Runtime Compiler (NVRTC) for generating kernel binary. As
it is shown in Figure 3, the kernel source is constructed from
two distinct pieces. One of these pieces is directly made by
our parameter routine call generatorfrom the set of model
parameters while the other piece is independent of the model
speci�cation.

1) Weight Matrix Distribution:For every weight matrix in
the list of model parameters, our solution has to �rst assign
matrix elements to registers belonging to threads in CTAs.
To avoid over-subscribing or under-subscribing CTAs with
different numbers of consumed registers, we virtually partition
the registers available to each CTA threads into multiple parti-
tions 2, and distribute pieces of model's weight matrices over
these partitions in a round-robin fashion. Figure 4 visualizes
this using an example. This strategy goes on until all the
weight matrices are assigned. Using this method, not only
inter-CTA register cache utilization imbalance is minimized,
but also NVRTC creates the most similar looking matrix pieces
at every level which helps reducing overall kernel binary size
and instruction cache misses.

Similar to Persistent RNN [6], we require each row of a
weight matrix to be stored in the registers of and processed
by one speci�c warp. For example, in Figure 4 row 8 with
the length 128 in Matrix B is distributed across 128 regis-
ters of warp 0 in CTA 3. This allows a coalesced load of
weight matrices from GPU DRAM into the registers3 and
to eliminate the need for synchronization with other warps
inside or outside of the CTA when performing matrix-vector
multiplication. We also distribute weight matrix pieces into
these partitions multiple rows at a time. In Figure 4, for
example, two consecutive rows of matrix B are given to each
warp. This helps reducing the number of remote atomic stores
when performing transposed-matrix-vector multiplication4. In
addition, while the width of the CTA should be small to avoid
excessive internal usage of registers by threads themselves,
since a thread can address up to 255 4-bytes-long architected
registers in the most recent GPU micro-architectures, there
need to be at least 256 threads resident on the SM to allow

2This partitioning is the same across all the thread blocks.
3In DyNet weight matrices are stored in a row-major order by default.
4Our implementation performs the transposed-matrix-vector multiplication

without transposing the matrix view in registers.



full utilization of its register �le with the size of 256 KB. Thus
we select CTA width to be 2565.

Since we are fusing the backward propagation and forward
propagation into one kernel, to avoid recurring accumulation
of weight matrix gradients into off-chip DRAM, we give
register partitions to gradient matrices as well. In the same
fashion as we did for matrix elements themselves, pieces
of gradient matrices are given to register partitions using
a round-robin scheduling depicted in Figure 4. Clearly, the
initialization and operation routines that will be generated for
a matrix and its gradient differ, which we discuss in detail
in Section III-A2. We will also discuss trade-offs involved
with caching gradients on chip and introduce an automated
decision-making optimization for it in Section III-C2.

There are two hyper-parameters for selecting a suitable
partition size. First is the number of CTAs per SM. Having
more CTAs results in more kernel occupancy and exposes
more parallelism by allowing more warps to be resident on
an SM. However, on the other hand, having more threads on
an SM means lower number of registers will be available for
caching the parameters. In our design, we allow for up to
two CTAs (each with width256) per SM depending on the
aggregated size of weight matrices that need to be cached, and
automate the decision-making in the framework. Having more
than two thread-blocks per SM is impractical as it heavily
limits the size of partitions.

The second hyper-parameter is the partition size (CTA width
multiplied by thread registers per partitionin Figure 4).
Because we enforce storing each row by one warp, if we
show the maximum length of a row in all the model's weight
matrices withrowmax , partition size can be formulated as:

Psize = TBSize � rpw � d
rowmax

warpSize
e (1)

whereTBSize is the thread-block size and is �xed at256,
warpSize is the warp size and is32, and rpw is the mini-
mum number of rows a warp gets to process. We essentially
transform the decision onPsize to a decision onrpw. The
more rows assigned to a warp the more the reuse of the input
vectors on operations such as matrix-vector multiplication and
the more data locality when executing the transpose matrix-
vector multiplication; nonetheless, at the same time, the larger
the granularity of the assigned tasks to thread-blocks, which
increases the chance of inter-CTA load imbalance.

Pro�le-Guided Load Granularity Determination. The
advantage of above transformation is thatrpw has a limited
number of valid integer options that are more than zero. For
instance, a model withrowmax = 1024 and one CTA per
SM can have a maximumrpw of six 6. In our framework,
we have enabled a pro�le-guided approach that compiles and

5One can argue that a CTA with width 256 can be replaced with two
CTAs with the width 128. However, this did not provide any bene�ts in our
applications due to the majority of tensors having the length more than 128.

6In our calculations for the kernel, we conservatively set aside 31 registers
per thread for interpretation routines and 32 additional registers for caching
vectors during matrix operations. This leaves us with 192 registers per thread
for caching weight matrices when there is only one CTA on the SM.

Fig. 5. A summarized view of the kernel source structure. Highlighted
sections are parts specialized at runtime based on the model's weight matrices
and their distribution over registers of CTAs, while the rest is static. Arrows
on the left hand side indicate the call hierarchy.

stores multiple kernels each using one of the valid options
for rpw. During the training, it starts with the kernel with
rpw = 1 and measures the average computation time for
multiple training batches. Then incrementally uses the kernels
for bigger rpw's and performs the measurements again. This
goes on until the framework observes performance degradation
or it arrives at the kernel with the largestrpw. For the rest of
the training, the framework uses the kernel that performed the
best during the pro�le stage. Note that the pro�ling takes only
a small portion of the training and its effect averages out across
many more training inputs and epochs. A similar approach
has been adopted by Tensor Comprehensions [20] where
an evolutionary search auto-tunes the training and gradually
converges to the best-performing compiled kernel.

2) Routine Call Generation:Using the partition size se-
lected in the previous step, the framework can embed the
register partition dimensions in the source code and generate
calls with appropriate template and function parameters to
the functions dealing with weight matrix operations. Figure 5
gives an overview of the structure of the source given to the JIT
compiler. For in-register matrix operations, we have created
device-side templated C++ functions that get included in the
source for JIT compilation (lines 2-4 in Figure 5). These op-
erations are matrix-vector multiplication for the forward pass,
transposed-matrix-vector multiplication, and outer product of
two vectors for extracting matrix gradients in the backward
pass. In these functions, arguments such as partition index, the
number of matrix rows per warp, and the number of iterations
of the warp over a row have to be passed as template arguments
in order to allow compile-time-known register array indexing.
In addition, there are matrix routines that are executed only
at the beginning or the end of the kernel (lines 17 and 21 in
Figure 5). These routines include parameter load from their



master copy in DRAM into the registers, in-register gradient
matrix initialization to zero, and application of gradients onto
the master copy of parameters.

There are also other static kernel pieces used in the kernel
source without any changes across different model speci-
�cations. These include the code for typical operations in
neural networks (lines 10-13 in Figure 5), such as forward
and backward device functions for activations, as well as
the routine for script interpretation (lines 18-20 in Figure 5).
Script interpretation routine is the inner part of the kernel that
loops over the script commands, interprets them, and executes
them with the speci�cations supplied in the script. We will go
into more details of the script interpretation and execution in
Section III-B2.

When all the pieces of the CUDA C++ kernel source are
constructed, our framework assembles them within a string and
passes them to the NVRTC for constructing the kernel binary.
It is worth noting that our approach resembles both code spe-
cialization and interpreter specialization [21] for dynamically
loaded code as follows.

B. GPU Script Generation and Execution

VPPS views each persistent CTA as avirtual vector proces-
sor. Each virtual processor needs a driving mechanism in order
to execute operations according to the type and placement
of nodes in the computation graph. This section discusses
the procedure to produce this driving mechanism, i.e., the
execution script, for one or a batch of computation graphs.
Such a script contains exclusive instructions for each virtual
processor and each processor is meant to utilize all its threads
to carry out a given vector instruction. The script essentially
guides persistent processors to read or write tensor contents
from and into the global memory, execute the operations, or
synchronize with each other if needed. This strategy is portable
as it does not make any assumptions about the shape of the
computation graph and therefore is well suited for dynamic
neural net models.

1) Operation Scheduling and Script Generation:To gen-
erate the script from a given batch of computation graphs,
our framework �rst sorts the nodes based on their maximum
depth calculated from the leaf nodes—nodes with no incoming
edges. This creates a correct total order of execution for
nodes where parallelism between nodes within a level can be
exploited due to their independence guaranteed through the
sort. Figures 6(a) and 6(b) illustrate this using an example.
This approach resembles depth-based batching [9], [17] for
dynamic nets, however, unlike these two works, our method
does not necessitate grouping similar operations together; all
the nodes in a level, regardless of their types, are scheduled
for a possibly concurrent execution. This creates a signi�cant
advantage for our approach from a task parallelism perspective
even in small batch sizes.

After this sort, the framework traverses the computation
graphs level by level starting from the leaf nodes (level
zero). Upon visiting every node, depending on the operation
associated with the node the framework encodes a complex

(a) Depth-based sorting
the nodes.

(b) Extracting a correct total execution
order for nodes in different levels.

(c) Generating script's instructions for virtual CISC-like vector processors.
The content within each square bracket pair is 4 bytes long.

(d) Distributing script instructions over Virtual Persistent Processors
(VPPs). The total number of VPPs is assumed to be 4. It is assumed
parameterv4 is cached across all VPPs while parameterv5 is cached
over VPPs 1 and 2.S andWare signal and wait instructions respectively.

Fig. 6. An example (inspired by computation graphs in [5]) visualizing step-
by-step operation scheduling and script generation in VPPS. This example
schedules forward-propagation; back-prop scheduling is performed similarly.

instruction—which will eventually be decoded and executed
by all the threads within the virtual CISC-like vector processor.
Figure 6(c) shows this procedure. Each instruction starts with
a 4-bytes-long preamble that encodes the type and input tensor
size for the operation. Depending on the operation, generated
instruction for a node may be up to 20-bytes-long, from which
most of the bytes are typically used to address the node's
input or output tensor content inside the global memory. For
example, for atanh() operation, the framework generates
12 bytes of instructions: 4 bytes for operation type and input
tensor length, 4 bytes for the output tensor address, and 4 bytes
for the input tensor address. Note that these addresses are, in
fact, offsets to the base address for a globally-shared memory
pool inside the DRAM7 Using 4 bytes for tensor addresses
lets us save on instruction length. Allocated memory pool size
in our applications did not need to exceed 16 GB; naturally,
applications that consume more memory—assuming they are
trained with 32-bit �oating point numbers—would necessitate
using more bits to store the offsets.

Since a virtual processors mayproducea tensor that another

7This is a reasonable assumption since DyNet, similar to neural net training
frameworks such as TensorFlow [13] or Deep Speech 2 [22], uses a custom
memory allocator to store tensors. These allocators typically request for a
large portion of the GPU's DRAM upfront in order to circumvent the recurring
overhead of CUDA runtime memory allocation and deallocation, which gives
them a continuous virtual memory region to work with.



processorconsumes, to enforce an order on the execution
and data visibility between virtual processors, we utilize two
special instructions namedsignal andwait . Each of these
instructions is 4-bytes-long and speci�ed byS and Win Fig-
ure 6(d). After generating the instructions for the nodes within
a level l , each of the virtual processors that will participate in
executing instructions atl are given asignal instruction with
a particular barrier index. Before creating instructions for the
the nodes in levell+1 , virtual processors that will be executing
instructions atl + 1 are also given await instruction over
that barrier. During the execution, these virtual processors will
have to wait on that barrier until the required number of signals
are arrived. This is to make sure that the dependencies for a
node are all satis�ed and visible to the executing virtual pro-
cessors before initiating the operation. We essentially enforce
a consumer-producer relationship among virtual processors
involved in executing nodes in two consecutive levels. For
barriers, threads inside the thread-block useatomicAdd()
(alongside__threadfence() to ensure correctness [23])
on designated global memory locations.

After level by level traversal of the computation graphs in
the batch, which collectively form a Directed Acyclic Graph,
the framework traverses the levels in the reverse order to
create the back-propagation instructions. Within each level
during forward or backward traversal, in order to enable a
fair load distribution across virtual processors and maximize
parallelism, the framework keeps track of their accumulated
assigned loads, and for every instruction dynamically targets
the virtual processor with the minimum load. While we
empirically set the load metric for most of the operations
proportional to the aggregated length of tensors they read, we
associate a relatively higher load for operations related to the
cached matrices in order to better represent their computational
intensity with respect to other operations.

2) Script-Guided Kernel Execution:For the generated
scripts to be executed within the forward-backward kernel,
they need to be copied to the device side. To maximize the
copy throughput, we concatenate the scripts for all the virtual
processors in a preallocated pinned host memory region and
use a single copy command to initiate the transfer. Also, the
set of scripts in the copied buffer is preceded by the pre�x sum
of the number of elements in each script in order to allow each
virtual processor quickly index into its own set of instructions.

Upon invoking the kernel, virtual processors execute the
script interpretation routine we had embedded in the kernel
source. Threads inside the virtual processor collaborate and
fetch the assigned script section into the SM's on-chip shared
memory. Then, they start to loop over the script's instructions:
sequentially decode each instruction and execute the associated
operation. Figure 7 shows a fragment of the loop content. The
decoder functions based on aswitch() statement on the in-
struction type which routes the control �ow to the appropriate
operation. In some cases, the length of the script for a virtual
processor might exceed its allocated shared memory size. This
is handled by fetching, decoding, and executing consecutive
pieces of its scripts in multiple rounds using another outer

Fig. 7. A fragment of the content of the virtual processor's script interpretation
loop. Arrows on the sides indicate the execution �ow for all the threads
of the virtual processor. This fragment resides within the forward-backward
propagation kernel and maps to line 20 in Figure 5.

loop within the kernel.
CISC vs. RISC. Different operations for our kernel, if

they are operating on tensors, have the DRAM memory
addresses for source operands and the destination operand
within them. If we were to virtualize CTAs as RISC processors
instead of CISC, we would have to explicitly control the
intermediate resources during the scheduling. For example, for
a component-wise add, we would need to specify the on-chip
memory and location the two input operands for the operation
have to be fetched into. We would also need to specify where
the result of the operation will be saved. Such a resource
management introduces runtime overheads for the hostduring
the training and negatively impacts the training throughput. On
the contrary, a CISC abstraction for CTAs of�oads resource
management to NVCC and handles it at the kernel compile-
time. Plus, the overall number of neural network operation
types the kernel needs to support is limited, which does not
provide an incentive for paying RISC abstraction cost.

C. Additional Optimizations

This section introduces optimizations and design decisions
for additional performance enhancement.

1) Kernel Execution Asynchrony:Since assembling the ex-
ecution script for a batch of inputs is independent of the results
from the previous inputs, we allow it to happen concurrently
with the GPU executing the script from the previous batch.
In more details, while the GPU is executing the forward-
backward kernel, the CPU moves on to the next batch, creates
the graph from user-provided expressions and inputs, sorts the
nodes level-by-level, and traverses the graph in the forward
and backward directions to generate the script for virtual
processors. And then it synchronizes with the device in order
to be able to reuse the pinned host memory buffer for the host-
to-device script transfer. This approach essentially enhances
the training throughput by enabling concurrent execution of
both CPU and GPU.




	Introduction
	Background and Motivation
	Virtual Persistent Processor Specialization
	Forward-Backward Kernel Specialization
	Weight Matrix Distribution
	Routine Call Generation

	GPU Script Generation and Execution
	Operation Scheduling and Script Generation
	Script-Guided Kernel Execution

	Additional Optimizations
	Kernel Execution Asynchrony
	Gradient Accumulation Strategy

	Design Automation

	Experimental Evaluations
	Performance Improvement
	Off-chip Memory Load Analysis
	Analyzing the Sensitivity to the Size of Parameters
	Execution Time Breakdown
	Other Applications
	JIT Compilation Overhead

	Related Work
	Conclusion
	References

