
1

Locality-aware GPU Register File

Hyeran Jeon Member, IEEE ,
Hodjat Asghari Esfeden,

Nael B. Abu-Ghazaleh Member, IEEE ,
Daniel Wong Member, IEEE , Sindhuja Elango

Abstract—In many emerging applications such as deep learning, large
data set is essential to generate reliable solutions. In these big data
workloads, memory latency and bandwidth are the main performance
bottlenecks. In this paper, we propose a locality-aware GPU register file
that enables data sharing for memory-intensive big data workloads on
GPUs without relying on small on-chip memories. We exploit two types
of data sharing patterns commonly found from the big data workloads
and have warps opportunistically share data in physical registers in-
stead of issuing memory loads separately and storing the same data
redundantly in their registers as well as small shared memory. With
an extended register file mapping mechanism, our proposed design
enables warps to share data by simply mapping to the same physical
registers or reconstructing from the data in the register file already. The
proposed sharing not only reduces the memory transactions but also
further decreases the register file usage. The spared registers make
rooms for applying orthogonal optimizations for energy and performance
improvement. Our evaluation on two deep learning workloads and ma-
trixMul show that the proposed locality-aware GPU register file achieves
over 2× speedup and saves register space up to 57%.

Index Terms—Matrix Operations, Convolution Neural Network, GPU
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1 INTRODUCTION

In big data era, one of the most critical computing prob-
lems is to speedup memory accesses. To deliver huge data
requested by massively parallel threads, big data workloads
such as deep learning are accelerated on many-core proces-
sors such as GPUs that are equipped with multiple high-
bandwidth memory controllers as well as various on-chip
memories. However, many big data workloads inherently
have data sharing features. For example, large matrix oper-
ations such as matrix multiply and dot product are one of
the most commonly used algorithms in big data workloads.
In matrix multiply, any two neighboring threads that are
assigned to the adjacent output matrix entries in a row
use the same row of the first input matrix. Also, the core
algorithm of convolutional neural network (CNN), which
is one of the most successful deep learning algorithms
is dot-product operation. In a CNN, neighboring neurons
compute dot-product of sliding sub-windows of the input
data, where sub-windows overlap significantly.

Figure 1 shows an example data sharing across neigh-
boring neurons in a convolution (conv) layer computation.
The colored entries of the output matrix are the conv results
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Fig. 1: Input data sharing among three neurons that are
vertically and horizontally neighboring in a conv layer

of three neurons where blue and yellow neurons are hor-
izontal neighbors and blue and green neurons are vertical
neighbors. Each neuron uses a sub-set of data of the input
matrix, which is highlighted with colored border lines. The
blue neuron takes the data in the first 5×5 matrix region,
runs dot-products, and stores the result to the output entry.
Likely, the green and yellow neurons each takes a matrix
from one row below and one column after the blue neuron’s
input matrix. The data in the shaded regions that overlap
between any two input regions are used by both neurons.
In this example, 20 out of 25 input data of each neuron
are shared between any two neighboring neurons and 16
of them are used by all three neurons. In the typical CNN
computing, as individual neurons executions are considered
as independent, each neuron issues 25 memory reads even
when the overlapping data are somewhere in the on-chip
memory already. These redundant memory accesses lead to
an excessive usage of memory resources. Even when many
of the data can be cached as they are accessed in the similar
time windows, due to the limited size of L1 cache, L2 cache
should be also excessively accessed. Given that interconnec-
tion between L1 and L2 is one of the critical performance
bottlenecks of GPUs [1], it is not desirable that all neurons
independently access memory. Also, shared memory can be
also used for reducing the memory access latency. But, due
to the limited size, the code should be carefully designed
to have each CTA to load only a small block of data over
multiple iterations as in blocked matrix multiply. Also, using
shared memory adds a burden of loading data from global
memory to shared memory and then register file.

In this paper, we propose to reduce the redundant
memory accesses by sharing data directly in the register
file without any help from L1 or shared memory. Instead
of having the three neurons in Figure 1 to store their 25
input data separately, our approach stores the overlapping
20 data to a common set of registers. A neuron accesses
memory only when the data is not already in the register
file. This approach not only reduces the redundant memory
accesses but also decreases the register file usage because
the three neurons share one physical copy of register for
each of the overlapping data rather than having them in
their private register separately. If data sharing is done in
the other on-chip memories such as shared memory, four
copies of each data should be stored in the SM: a copy in
the shared memory and three copies in the register file for
the three neurons. Given the massive number of neurons
used for each conv layer, significant resource waste is ex-
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Fig. 2: Proposed Data Sharing (an example of CNN)

pected if using other on-chip memories for data sharing. The
registers and the other on-chip memories that are saved by
our approach may be used for improving the performance
further by running more CTAs [2]. The larger size and the
lower typical utilization also makes the GPU register file
more favorable for the data sharing over the other on-chip
memories [3]. Therefore, we leverage large register file space
to support more threads by preserving common data longer
without worrying about cache thrashing, insufficient shared
memory space, or a sophisticatedly designed software.

On-chip inter-thread data sharing have been explored
by several studies [4], [5], [6]. However, many of them
either used specialized data flow architectures where data
sharing is easier via direct communication channels among
processing elements, or focused on time-series parameters
sharing where excessive concurrent accesses do not need to
be considered. WIR [7] leveraged physical register sharing
to skip instructions. As WIR focused on reducing arithmetic
operation executions for a better energy efficiency, WIR has
a more complex design that consists of hash and instruction
meta information tables. Also, the register reuse is allowed
only when the warp-unit register has a perfectly identical
data. Our approach focuses on memory access overhead and
hence exploits common memory access patterns that enables
warps to share data for both perfect- and partial-matching
cases with a simpler address mapping table. The state-of-
the-art deep learning libraries use register file and shared
memory to speedup the data access latency [8]. However,
software-level data sharing leads to an excessive register
file usage with redundant data copies because current GPUs
do not allow inter-warp register sharing. In this paper, we
extend the architecture-to-physical register mapping in the
architecture level to enable data sharing across warps.

2 DATA REUSE IN REGISTER FILE

Warps may share either perfectly-matching data or partially-
matching data. We explain how our approach supports both
cases by using a conv layer example.

2.1 Perfect Sharing

Any two vertically neighboring neurons have commonly
used input data as illustrated as a shaded region between
the inputs of the blue and the green neurons in Figure 1.
The entire contents of each row in the overlapping region are
shared by the two neurons, which enables perfect sharing.
As each neuron is assigned to a GPU thread in typical CNN
implementations, vertically neighboring neurons are likely
to be in different warps. For example, if the blue neuron is
thread 0 of warp 0, the green neuron is thread 0 of warp N.
Figure 2a shows the register updates of perfect sharing in a

warp unit, where we assume that each warp has only five
threads for simplicity. Each five-element array is a warp-unit
register where each entry is a register of a thread in the same
warp. The three warp-unit registers in the same row are of
the three groups of neurons that are vertically neighboring
(i.e., the warp having N1 to N5 is the one that has the blue
neuron, the Nth warp consisting of Nn to Nn+4 is the one
that has the green neuron, and the Kth warp is the one that
is one row below the Nth warp). The second row of the first
warp is identical with the first row of the Nth warp. Likely,
the third row of the first warp is the second row of Nth warp
as well as the first row of Kth warp.

These vertically overlapping rows can be directly shared
by mapping the same physical register pointer to the ar-
chitectural registers of the neighboring warps. For example,
if the Nth warp loaded its first row to a physical register
Pn, the first warp can get its second row values by simply
mapping its destination register of the load instruction to
Pn without needing to access memory. Likely, once one of
the three warps loads the values in Pk, the other two warps
can get these data by simply mapping their registers to Pk.
The perfect sharing can be also found among horizontally
neighboring warps in matrix multiply. For example, if two
128×128 matrices are multiplied, four warps that are as-
signed to the same row will use the same input row of the
first matrix that can be shared by using physical register
mapping. The perfect sharing is light weight because it
only requires to map an architectural register to an existing
physical register instead of a memory load. However, it is
possible only when warps use exactly the same data. For
partially-matching data, we use partial sharing.

2.2 Partial Sharing
The blue and yellow neurons in Figure 1 show the par-
tial sharing between neighboring neurons. The horizontally
neighboring neurons are likely to be processed by the neigh-
boring threads in the same warp. For example, if the blue
neuron is assigned to the thread 0 of warp 0, the yellow
neuron is mapped to the thread 1 of warp 0. For each data
load, these threads read data that are next to each other with
a given stride distance. Figure 2b shows the register updates
by this load pattern in a warp unit when stride is 1. The
three arrays in each row show the first three data that each
of the five neurons load from the memory. For example, N1

loads 1, 2, and 3 (the first data in each array) as its first three
data and stores them to the first 32-bit entry of the warp-
unit registers P1, P2, and P3, respectively. For each load
operation, the values of the warp-unit register are shuffled
down by one of the previous load result. For example, N1

uses 2 as the second data, which is the first data of N2

and so on. This operation can be represented with NVIDIA
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Fig. 3: Architectural Modification

CUDA Shuffle instruction, P2 = shfl down(P1, 1, 5);.
If the destination register value of each load is kept until the
second load, the majority of the data (four out of five each
time) can be reused without issuing another load operation.

We still have one data that should be newly loaded each
time (6 and 7 in the second and the third loads, respectively).
These values can be fetched from neighboring warp’s regis-
ters. The second row of Figure 2b shows the register updates
of the neurons 6 to 10, which are grouped to the second
warp. As warps are interleavingly scheduled in GPUs, after
the first warp loads the data 1 to 5, the second warp loads
the data 6 to 10. When the first warp is to load the second
values, the data 6 is already in a register Pn. Therefore, the
second warp-unit register values of the first warp can be
constructed by merging the shuffled four values (2 to 5)
and the first value of the second warp (6). By running two
simple logical operations on the existing register values, we
can skip memory loads for partially-matching data.

3 ARCHITECTURAL MODIFICATION

To share data in a register across multiple warps, it is
essential to decouple the architectural registers from the
physical registers. As the dynamic architectural-to-physical
register mapping has been already evaluated by several
studies [3], we assume that our baseline register file already
incorporates virtual register mapping. The only difference
between the baseline and our mapping is that one physical
register id may appear in multiple entries of the register
mapping table to be mapped to multiple architectural reg-
isters, which doesn’t need any modification in the register
mapping mechanism.

Figure 3 shows the modified architecture. The compo-
nents with bold outline and dark color are newly added. To
indicate the physical register that holds the shared data, an
Address Mapping Table is added in the load-store unit. Once
a load address is calculated and the address is bound to the
global memory, the address mapping table is looked up. If
the same address is not in the table already, the address and
the destination physical register are recorded to the table
and the load is issued. The data sharing in our proposed
approach is done in warp unit. Thus, each entry of this
table contains the information of a warp-unit load accesses.
As threads in a warp typically access consecutive addresses
with a fixed stride, we record the base address (the address
of the first thread), the stride, and the active lane count
rather than storing addresses of all the threads.

Once a memory address is recorded in the address
mapping table, any following load instructions look up the

table and retrieve the data from the physical register that
is mapped the same address and skip the load executions.
The destination architectural register’s entry in the register
mapping table is updated with the physical register id
mapped to the load address in the address mapping table.
This register sharing is done in hardware, without any help
from compiler. The table lookup and register update is
controlled by Mapping Controller. An entry of the address
mapping table is deleted when the corresponding memory
address is newly written or when there is no more mapped
architectural registers. When a store instruction is issued
to the load-store unit, the address is checked from the ad-
dress mapping table and the corresponding entry is deleted.
Note that to enforce memory consistency, we exclude data
declared as volatile from the register sharing. In GPU, it
is rare but possible that the CTAs communicate through
global memory. To reflect the remote updates that cannot
be detected by the local operations, the compiler is slightly
modified to include the volatile variables to the renaming-
exempted registers [3] such that load operations are not
skipped for them. Also, when an architectural register be-
comes dead and the mapped physical register is released,
the mapping controller checks the register mapping table if
there is any more architectural register mapped to the same
physical register. If there is no more mapped register, the
associated address mapping table entry is deleted.

The address mapping table is sufficient for supporting
perfect sharing. However, to support partial sharing that
needs to merge two registers, we add one dedicated operand
collector slot as marked with w − merge in Figure 3. This
new slot loads two registers that contain subsets of the
requested warp-unit register data. These two registers can
be found by checking the address mapping table. For each
global memory load instruction, if mapping controller finds
that no entry in the address mapping table can cover the
requested data, it finds up to two entries that together cover
the requested warp-unit data. If there are no two entries that
can support all the requested data, the load is issued to the
memory. Otherwise, the two registers are requested to the
operand collector logic and the load execution is skipped.
Once two register values are ready, the mapping controller
uses them to construct the requested data. For this merging
process, we design a small ALU that runs bit-level SHIFT
operations for shuffling and an OR operation for merging.
The merged value is written to the load instruction’s desti-
nation register at the writeback stage.

The perfect sharing does not add any performance
overhead because it only requires one address mapping
table lookup and a register renaming table update. If the
corresponding entry is found from the address mapping
table, it does not even require register writeback because
the destination register is mapped to a physical register that
already has the requested value. The partial sharing takes
longer time than the perfect sharing because two registers
should be read from the register file and shuffle and merge
operations should be done on them. Thus, we run partial
sharing only upon L1 cache misses. L1 cache miss can be
easily detected without extra logic because the mapping
controller runs in the load-store unit, which probes L1 cache
for memory operations and operates miss handling upon
cache misses [9].
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4 EVALUATION

The idea is implemented in GPGPU-Sim with baseline vir-
tual register mapping [3]. Two-level warp scheduler and
128KB per-SM register files are used. We evaluated perfor-
mance and register file usage while running two CNNs of
Tango DNN benchmark suite [10] and matrixMul.

4.1 Performance
Figure 4 shows the evaluation results of CifarNet and
AlexNet. We measured the performance with infinite map-
pings and with 200 mappings only (address mapping table
size becomes 1KB). With 1KB mapping table, per-layer
and end-to-end performance showed up to 116% and 12%
speedup, respectively. In CifarNet, the earlier layers showed
higher improvement due to the larger feature map size.
Note that smaller feature maps break individual warp-
unit loads into multiple stride groups and require multiple
entries in the address mapping table. To support more data-
intensive layers with a simpler design, we support only
one stride group per load access. In AlexNet, pooling layers
showed even higher speedup than conv layers because the
3D input structure of conv layers impedes data sharing
by increasing the stride length, while its overlapping-based
max pooling provides higher data sharing opportunity. The
speedup was mainly sourced from the reduced global mem-
ory accesses, where a total of 36% and 20% reduction was
observed in CifarNet and AlexNet, respectively. We also
measured the breakdown of the partial and perfect sharing,
where the partial sharing contribution of earlier to later
conv layers is decreased from 56%, 29% to 16%, and 24% to
1% in CifarNet and AlexNet, respectively (the contribution
of perfect sharing is 100% - that of partial sharing), while
pooling layers were mostly sped by partial sharing. The blue
graphs of Figure 4 show the max utilization of warp-unit
registers during the execution. Our approach saved 57% and
26% register space in CifarNet and AlexNet, which makes
44KB and 37KB extra register file space available.

For the matrixMul, we evaluated an algorithm without
any optimization and a blocked-matrixMul using shared
memory to understand the impact of the register sharing
over the existing optimizations. Our approach without any
optimization showed 83% speedup as plotted with the dark-
est yellow in Figure 5 while software optimization (medium

yellow) shows only 8% further speedup. Regarding the
register usage, the optimized matrixMul uses 50% more
registers than unoptimized one, while our design reduced
almost 40% register usage, which spares 17KB and 24KB
register space. With these spared registers, register shar-
ing allowed to run more CTAs and achieved 10% further
speedup over the optimized code as shown in the lightest
yellow bar.

4.2 Area
Our design adds an operand collector slot, an address map-
ping table, and a mapping controller. An operand collector
slot adds insignificant overhead as GPUs have 16 operand
collector slots per SM already. Each address mapping table
entry consists of a total of 38 bits where base address, stride,
and active count are 24 bits, 9 bits, and 5 bits, respectively,
which are set by the load address range and stride size
of DNN workloads and matrixMul. The address mapping
table size is limited to 1KB and the register renaming table
in the baseline is 1KB.

5 CONCLUSION

We propose a locality-aware GPU register file that exploits
two common data sharing patterns of big data workloads.
The proposed mechanism improves performance and re-
duces register usage with which the performance and en-
ergy can be further improved by applying orthogonal opti-
mizations.
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