
RegMutex: Inter-Warp GPU Register Time-Sharing

Farzad Khorasani∗ Hodjat Asghari Esfeden† Amin Farmahini-Farahani‡ Nuwan Jayasena‡ Vivek Sarkar∗

∗Georgia Institute of Technology, School of Computer Science, Atlanta, GA, USA
{farkhor, vsarkar}@gatech.edu

†University of California Riverside, Department of Computer Science, Riverside, CA, USA
hasgh001@ucr.edu

‡AMD Research, Santa Clara, CA, USA
{afarmahi, nuwan.jayasena}@amd.com

Abstract—Registers are the fastest and simultaneously the
most expensive kind of memory available to GPU threads.
Due to existence of a great number of concurrently executing
threads, and the high cost of context switching mechanisms,
contemporary GPUs are equipped with large register files.
However, to avoid over-complicating the hardware, registers
are statically assigned and exclusively dedicated to threads for
the entire duration of the thread’s lifetime. This decomposition
takes into account the maximum number of live registers at
any given point in the GPU binary although the points at
which all the requested registers are used may constitute only a
small fraction of the whole program. Therefore, a considerable
portion of the register file remains under-utilized.

In this paper, we propose a software-hardware co-
mechanism named RegMutex (Register Mutual Exclusion) to
share a subset of physical registers between warps during the
GPU kernel execution. With RegMutex, the compiler divides
the architected register set into a base register set and an
extended register set. While physical registers corresponding
to the base register set are statically and exclusively assigned
to the warp, the hardware time-shares the remaining physical
registers across warps to provision their extended register set.
Therefore, the GPU programs can sustain approximately the
same performance with the lower number of registers hence
yielding higher performance per dollar. For programs that
require a large number of registers for execution, RegMutex
will enable a higher number of concurrent warps to be resident
in the hardware via sharing their register allocations with
each other, leading to a higher device occupancy. Since some
aspects of register sharing orchestration are being offloaded to
the compiler, RegMutex introduces lower hardware complexity
compared to existing approaches. Our experiments show that
RegMutex improves the register utilization and reduces the
number of execution cycles by up to 23% for kernels demanding
a high number of registers.

Keywords-compiler; GPGPU; GPU; microarchitecture; reg-
ister; register file; RegMutex; time-multiplexing; time-sharing;
warp;

I. INTRODUCTION

Registers are the fastest available memory to the threads

in a machine executing a program. Register are being kept

in-core closely coupled with the ALUs and usually are the

most expensive form of memory (per-byte) in a machine.

The set of registers for a processor are packed in a structure

called register file. In GPUs, in order to enable concurrent

residence of thousands of threads for massive Thread-Level

Parallelism (TLP), the architecture employs a very large

SRAM storage structure as the register file. A considerable

fraction of die area and chip power has to be dedicated to

this structure [1], [2].

Nonetheless the allocation of physical registers to ar-

chitected registers in the kernel binary is static, i.e., the

maximum number of live registers at any given point

determines the kernel’s physical register demand, and is

exclusive, i.e., a warp’s physical registers are solely its own

for the lifetime of the thread-block containing the warp. This

allocation scheme carves a portion of the physical registers for

the warp regardless of the fluctuations in the register usage by

the warp. In other words, even if all the requested registers are

live only for a few instructions, the hardware reserves all the

allocated physical registers for the warp, thereby making them

inaccessible by other warps. This results in underutilization

of a large portion of the register file during GPU kernel

execution and hence ignoring the potential performance gain

opportunity.

A number of solutions have been proposed to remedy

this issue. Most notably, Jeon et al. [3] built on the

Register Renaming Table (RRT) idea from the CPU realm

to proactively map architected registers to physical registers

on-demand. However, this solution, as well as other work

that suggest fundamental modifications to the structure of the

register file and its allocation mechanism [4], [5], [6], impose

significant hardware overheads. In addition, proposals such

as the work of Jatala et al. [7] fail to address fluctuations

in warp register demand during kernel execution, hence lack

general applicability.

In this work, we present RegMutex (Register Mutual

Exclusion), a synergistic compiler-microarchitecture design

that enables efficient register time-multiplexing between

warps. In RegMutex, a subset of the architected registers

are allocated on-demand as-a-whole and deallocated upon

no demand. RegMutex utilizes the information gathered by

compiler analysis to instruct the hardware for physical register

allocation and deallocation. At compile time, RegMutex

separates the group of kernel architected registers into a

816

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

2575-713X/18/$31.00 ©2018 IEEE
DOI 10.1109/ISCA.2018.00073

base register set and an extended register set. Using live-

register analysis, the compiler determines the locations within

the kernel where the number of live registers exceeds the size

of the base register set and marks them as acquire points.

Similarly, program points where the number of live registers

falls equal to or below the size of the base register set are

marked as release points. On the hardware side, the physical

registers are allocated for the base register set whenever the

warp is resident. The extended register set, on the other hand,

is allocated physical registers only when the warp reaches an

acquire point, and deallocated once the warp faces a release

point. The extended register sets of all warps are allocated

out of a communal pool of registers that is shared by all

hardware-resident warps (the shared register pool).
RegMutex diminishes the pressure on the register file by

eliminating the necessity of register file size accommodation

with the maximum number of live registers at any point

in the kernel. The warps proceed in the program as usual

and will be blocked only when a large number of them

have acquired the extended register set. A blocked warp

will resume execution by acquiring the extended set as

soon as one of other warps releases the shared resource.

Essentially, the benefit of RegMutex can be viewed from

two perspectives. First, RegMutex allows GPU programs to

sustain approximately the same performance with a smaller

hardware register file. Second, for programs that incur low

SM occupancy due to excessive register usage, our technique

enables higher number of concurrent warps to be resident in

the hardware via sharing their register allocations with each

other, leading to a superior performance. In other words, if

a warp asks for a large number of architected registers, it

can now co-reside with more warps on the SM. This paper

makes the following contributions:

• We present RegMutex, a coordinated compiler-microar-

chitecture technique as a remedy for GPU register file

underutilization due to static and exclusive physical

register allocation.

• We describe the RegMutex compiler and microarchi-

tecture support schemes and show that this synergistic

design introduces much lower (less than 2%) hardware

storage overhead compared to existing solutions.

• We analyze the effectiveness of our solution by imple-

menting it in the GPGPU-Sim simulation framework.

We show that RegMutex enhances the performance of

kernels for which the occupancy is limited by high

register demand, and makes the application performance

resilient on architectures that supply small register files.

The rest of this paper is organized as follows. Section II

expresses the motivation for a GPU register sharing approach.

Section III describes our solution, elaborating RegMutex’s

compiler and micro-architectural design. Section IV presents

the experimental evaluations, and Sections V and VI sum-

marize related work and our conclusions.

II. MOTIVATION

A program, in its closest-to-machine language form, works

with a set of registers. This set of registers are referred to

as architected registers, and will be mapped to physical

registers by the processor’s hardware. To map architected

registers to physical registers, CPUs utilize a mechanism

called register renaming and a table called Register Rename

Table (RRT). GPUs, on the other hand, use a simpler method

for this purpose [8]. The mapping allows a simple Y = X+B
equation for each SIMD group (warp) to calculate its physical

register indices where B is the base address of the block

of registers assigned at run time to the specific warp, X is

the architected register index (i.e., the offset into the block

of registers), and Y gives the physical register index. This

simple mapping avoids the overhead of performing register

renaming for thousands of concurrently running threads. The

set of physical registers is statically reserved for the warp’s

life-time (i.e., B is constant for the duration of the warp’s

execution), and becomes available for other threads only

after the CTA (Cooperative Thread Array) to which the warp

belongs retires [9].

One important drawback of the above scheme, especially

compared to RRT, is physical register underutilization during

kernel execution. The static reservation is conservative in a

sense that it requests for the maximum number of registers

that are alive at any point in the GPU program. However,

during a GPU program execution by the warp, not all the

reserved physical registers are alive at all times. In fact, the

time interval in which all the requested physical registers are

utilized may only be a small fraction of the kernel execution

time. This is particularly true for GPU applications containing

nested loops in which register consumption increases within

inner loops. Figure 1 illustrates this claim by showing the

percentage of live registers with respect to the allocated

registers during the program execution for a sample thread

and six GPU kernels. Here we define a register live if its

value is used in later instructions. It is evident from the plots

that for the majority of the program execution only subsets

of the requested registers are alive, and therefore, a large

portion of the thread’s allocated registers remain unutilized.

Figure 1 also shows that register utilization may fluctuate

constantly due to the GPU code shape.

Another drawback of the aforementioned scheme is

limiting the occupancy for GPU programs (kernels) with

threads that require a high number of architected registers.

Occupancy is described as the ratio of the number of warps

residing on the Streaming Multiprocessor (SM) over the

maximum number of warps that warp schedulers in the SM

allow for residency. For example, on Nvidia Volta GPUs,

there can be up to 64 warps residing on an SM [13]. The

higher the occupancy, the larger the number of candidate

warps to be executed by the SM at any given time. This

enables the GPU cores to cover memory access latency

817

0%

20%

40%

60%

80%

100%

0 1000 2000 3000

(a) CUTCP.

0%

20%

40%

60%

80%

100%

0 300 600 900

(b) DWT2D.

0%

20%

40%

60%

80%

100%

0 500 1000 1500 2000

(c) HeartWall.

0%

20%

40%

60%

80%

100%

0 150 300 450

(d) HotSpot3D.

0%

20%

40%

60%

80%

100%

0 2500 5000 7500

(e) ParticleFilter.

0%

20%

40%

60%

80%

100%

0 125 250 375 500

(f) SAD.

Figure 1. The utilization of a sample thread’s allocated register set during
kernel execution. X axis shows the number of instructions executed by the
thread and Y axis shows the percentage of live registers with respect to
allocated registers. Results are extracted using our extension to GPGPU-
Sim [10]. Applications are from Rodinia [11] and Parboil[12].

more effectively through having more concurrent warps

(note that higher occupancy does not necessarily lead to

better performance [14] due to possible side-effects such as

cache pollution, but a low occupancy can cause resource

underutilization). A warp that requires a high number of

registers lowers the SIMD occupancy. It essentially disallows

co-residency of other warps due to register file resource

limitations, however the warp may need excessive registers

only for a short period of the GPU program. In summary,

these two drawbacks are two different faces of the same coin:

registers are statically and exclusively reserved but not all

of them are utilized at the same time.

Jatala et al. [7] propose a register sharing technique in

which a few warps share the set of registers having higher-

than-a-certain-threshold architected index. They propose a

hardware lock for a pair of warps to acquire. The first warp

that asks for a shared register acquires the lock and disallows

the execution of its pair until it reaches the end of program.

The main shortcoming of this solution is the one-time acquire

with no in-kernel release. In other words, the warp that gets

the ownership of the shared registers will not release it

until the warp is finished. In addition, the solution requires

hardware modification at the register file level for the accesses.

For each register access, up to three conditions have to be

verified (if the warp is shared, if the register is shared, if the

lock is already acquired). The warp will have to loop inside

these conditions if the answer to all of them is positive.

Jeon et al. [3] suggest virtualizing the register file to

share the physical registers between the warps. They suggest

embedding the dead or liveness information of the architected

registers into the source code by the compiler, and using

a Register Renaming Table (RRT) inside the hardware to

proactively release dead registers from one warp and re-

allocate them to a different warp. In other words, they borrow

the idea of RRT from CPUs and implement it for the GPUs.

The final outcome of this scheme is a smaller register file and

reduced power consumption at the unignorable expense of

higher hardware complexity. Jing et al. [4] take an even more

drastic measure; they emulate the behavior of the register

file using a cache by combining the register file and SM-

private L1 cache. These solutions necessitate heavy hardware

modifications such as RRT, Release Flag Cache as well

as adding required support in the fetch stage of the GPU

pipeline.

These drawbacks motivate the need for an inter-warp

register sharing approach that introduces low hardware

complexity while, simultaneously, being effective at reducing

the underutilization of the register file.

III. REGMUTEX: INTER-WARP REGISTER TIME-SHARING

In this section, we propose RegMutex, an effective ap-

proach to remedy GPU register file underutilization. RegMu-

tex time-multiplexes the allocation of a subset of registers

required by the kernel between multiple warps. During the

execution of the kernel, when a warp is at a program point in

which it does not work with any of the registers in this subset,

its execution progresses normally. However, when the warp

needs this subset, those registers need to be obtained from a

shared register pool for the warp. More formally, RegMutex

divides the architected register set into base register set Bs

and extended register set Es. Bs is assigned to physical

registers in the register file as soon as the warp resides in

the SM, similar to what we observe in existing hardware.

On the other hand, Es is allocated to register files only

when the program requires more live registers than |Bs|;
and also Es is de-allocated right after the number of live

registers in the kernel becomes equal to or less than |Bs|. The

communality of the shared register pool enables on-demand

register allocation for segments of the GPU kernel where the

number of live registers increases.

When a warp is launched for execution on the hardware,

while the Bs physical register assignment is instantaneous

and lasts for the duration of warp execution, the allocation

of Es is controlled via compiler-generated instructions that

enforce an acquire-release semantics. The compiler identifies

the code segments in the program where the number of live

registers exceeds |Bs|. Right before entering each such code

818

0

8

16

24

32

40

48

Time

R
e
g
is

te
r

A
ll

o
c
a
ti

o
n

Warp A ends execution and

warp B starts execution

Warp A starts

execution

Unused registers

allocated to warp A

Unused registers

allocated to warp B

Registers allocated to

and used by warp B

Registers allocated to

and used by warp A

(a) Baseline execution without RegMutex.

0

8

16

24

32

40

48

Time

R
e
g
is

te
r

A
ll

o
c
a
ti

o
n

Warp A releases its

extended register set

Warp A starts

execution

Warp A acquires its

extended register set

Warp A ends

execution

Warp B acquires its extended

register set and resumes

Warp B tries to acquire its

extended register set but stalls

Warp B starts

execution
Warp B releases its

extended register set

Warp B ends execution

Shared pool for

extended register set

Warp B

base register set

Warp A

base register set

(b) Execution using RegMutex.

Figure 2. Example of two warps A and B executing identical code with
and without RegMutex. Base register set size is 16 registers (per thread) as
well as the Shared Register Pool (SRP) size. The architecture is assumed
to have 48 hardware registers per thread.

segment, the compiler inserts an instruction that acquires
Es from the Shared Register Pool (SRP). And immediately

after each such code segment, the compiler inserts a release
instruction to release its Es back to SRP. For an acquire,

if the currently unused registers in SRP is insufficient to

satisfy the acquire instruction for the extended registers, the

warp has to wait for a release by another warp in SM to

free up shared registers. In this case, the warp stalls and

only becomes eligible for execution once sufficient shared

registers have been freed up. In summary, the compiler drives

the warps within SM to time-multiplex the pool of shared

hardware registers.

Figure 2 shows a simplified, illustrative example of a

case akin to typical GPU execution, where multiple warps

execute the same code. Each warp has a maximum register

requirement of 31 registers per thread in the example.

As shown in Figure 2(a), a baseline architecture without

RegMutex reserves 31 registers per thread for the full duration

of the execution of each warp, preventing any overlapping

of execution of the two warps (as the combined register

use of the two warps, at 62, exceeds the 48 available

hardware registers per thread). Figure 2(b) shows an execution

configuration using RegMutex where base register sets of

16 registers per thread each and extended register sets of 16

registers per thread each are utilized by the two warps. Here,

the code regions that only require the base register sets can

execute in parallel, serializing only the portions that require

use of the extended register sets thus enhancing the execution

time. Note that in this example, for simplicity, we assume

the registers are the only hardware resource constraint.

RegMutex allows a warp to acquire and release its Es as

many times as needed during its lifetime. Here we enforce

a fixed |Es| for the acquires within a kernel. Also, nested

acquire-release instructions are not permitted. In other words,

an acquire after another acquire without an intervening release

or a release after another release without an intervening

acquire should have no effect. Both these assumptions keep

the hardware complexity of the design low and enable flexible

use of acquire or release within conditional code. To facilitate

the discussion on our solution in this paper, we assume that

concurrent warps on an SM execute identical programs, which

is the case for the majority of GPU applications.

In the rest of this section, we elaborate upon the compiler

and architecture support for our technique.

A. Compiler Support

The compiler performs a number of methodical steps to

support RegMutex:

1) Register liveness analysis of the GPU assembly code

to extract the register usage information.

2) Extended register set size determination.

3) Acquire/release primitive injection into the assembly

code.

4) Architected register index compaction before and

throughout the release state.

The first two steps analyze the kernel program and the latter

two modify it. After these steps, the GPU kernel contains

functionally the same code added only with extended register

set acquire and release directives at proper locations. We

now elaborate upon these steps.

1) Register Liveness Analysis: RegMutex relies on static

(compile-time) register liveness information for setting the

boundaries for extended register set use. Register liveness

analysis helps our technique to recognize the program’s

register requirements at different instructions in order to

instruct the executing microarchitecture for extended set

acquire or release actions at appropriate locations.

As in [15], we define the static liveness for an architected

register index as the set of (not necessarily consecutively

placed) instructions at which the value previously written

into the register has to be held intact since there is a non-

zero probability that it will be read later. Figure 3 shows

an example from a GPU program and the static liveness of

registers. Within a basic block, if an architected register is

written (defined) at an instruction and read (used) at some

later instructions for the last time and without any intervening

register definition, all the instructions between the definition

point and the last use point are considered live for that

819

���������	
����	�
����
�������
���������	���������������������
���
������
�������������� !�
��"����#!$��
��

���������%�
���!���
&��'�������!���
���������	
����	�
���
������������(�

� � � �

� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � �

�� �� �� ��
����)����*

�����#��������

����)�����+��
&��'����������&�
����,����	
���
&��
&���
��
����,����	
����	�
���
&�����������(�
���������*

�������

��

��

��

��

Figure 3. A GPU code sample from DWT2D application and its static
register liveness.

particular register. Register R1 in basic block s1 in Figure 3

is an example of this case.

However, in the presence of control flow divergence,

liveness analysis is not straightforward because of the

unavailability of path traversal information at compile time.

If a register is defined before a branch and is used within

at least one of the branched basic blocks, the register has

to be considered alive within all the resulted branch basic

blocks due to the uncertainty of the execution serialization by

threads within the warp. In other words, the compiler has to

be conservative in its assumptions. This makes the immediate

post-dominator instruction of the branches the first candidate

for considering the architected register dead. For instance,

in Figure 3, although R3 is used within only s2 it has to

be considered alive throughout s1 as well. Similarly, if a

register is defined within a branch and is going to be used in

a post-dominator basic block, it has to be assumed alive in

other branches. The liveness status of Register R2 throughout

basic block s1 in Figure 3 is due to this observation.

RegMutex performs this analysis on architected registers

in the GPU assembly program. The outcome of this step is a

collection of Boolean vectors each representing the liveness

of particular architected registers at particular instructions.

We have visualized this in Figure 3 1. This information will

be used in the next steps to determine the appropriate size for

the extended register set as well as to inject the compiler-to-

microarchitecture directives at appropriate program locations.

2) Extended Register Set Size Selection: Using static

liveness information, the compiler now needs to determine

the size of the extended register set, i.e., |Es|. Note that

|Es|+|Bs| is fixed and equals to the total number of registers

the kernel asks for, hence, selecting either |Es| or |Bs|
enforces the value of the other. Also, note that increasing

|Es| may have adversarial effects. On one hand, a large |Es|
is expected to give higher occupancy by allowing more warps

to be resident on the SM. On the other hand, the compiler has

to mark larger sections of the program as being in an acquire

state, thus warps execute more instructions while holding

1A similar analysis and liveness representation are provided for CUDA
application by the nvdisasm CUDA binary tool [16].

their extended set which may result in more contention over

SRP sections during the run time.

As both the number of warps resident on SM and their

scheduling freedom impact overall hardware utilization and

performance, we use a simple yet methodical policy that

achieves a desirable trade-off between improving physical

register utilization and not curtailing scheduling freedom.

After finding the baseline kernel’s theoretical occupancy and

the contribution of kernel register usage as a limiting factor,

we select candidate values for |Es| from an empirically-

derived set of {0.1, 0.15, 0.2, 0.25, 0.3, 0.35} multiplied by

the number of registers used by the kernel. Then we keep the

even numbers that result in the highest occupancy calculated

only with the base set size. If multiple candidate elements

for |Es| give the same theoretical occupancy, we go with the

largest element that possibly results in concurrent progress

of more than half the warps in the current occupancy in

the acquire mode. Let us illustrate these steps using an

example. Assume the kernel asks for 24 registers to run on

our baseline (Nvidia Fermi architecture) which supports up

to 20 registers per thread without limiting the occupancy. Let

us also assume that register usage is the only factor limiting

the theoretical occupancy here. Based on our approach,

the candidate set for |Es| consists of the even numbers in

�24�{0.1, 0.15, 0.2, 0.25, 0.3, 0.35}� (� is the element-wise

product) which yields {2, 4, 6, 8}. From this set, 4, 6, and 8
result in |Bs| equal to 20, 18, and 16 respectively which have

full occupancy for only the base set. Assuming maximum

number of warps per SM is 48 and the total number of

registers in the register file is 32K, these configurations

leave 16, 26, and 32 sections for SRP which indicate the

number of warps that can acquire Es concurrently. RegMutex

selects |Es| = 6 since it is the largest candidate that allows

more than half of the warps on the SM (in this example 26)

in the calculated occupancy be in the acquire state.

After determining the number of registers in the extended

set, the new theoretical occupancy of the kernel is obtained

using calculated |Bs|. This occupancy gives the number of

CTAs that the SM can host, and also determines the total

size for the SRP.

Deadlock Avoidance: To avoid deadlocks in our design,

two additional rules govern |Es| selection. First, the distribu-

tion of |Bs| and |Es| has to be such that there are enough

registers in the shared pool for at least one warp’s Es. This

ensures that warps do not stall indefinitely for an acquire.

Second, |Bs| has to be greater than or equal to the number

of live registers at any point in the program that CTA-wide

synchronization primitives such as __syncthreads()
exist. This avoids any deadlock due to inter-dependency

of warps. In other words, while a warp Wa is waiting for

another warp Wb to arrive at the synchronization PC, warp

Wb will not wait at an acquire instruction for warp Wa to

release its extended register set.

820

3) Acquire/Release Primitive Injection: After recognizing

the regions within the program that use the extended register

set, the compiler injects acquire and release primitives

respectively at the beginning and the end of such regions.

For RegMutex, we create an instruction to convey acquire or

release information to the hardware. Unlike [3] RegMutex

need not rely on meta-instructions since the content of this

instruction is either a release or an acquire command.

4) Architected Register Index Compaction: To preserve

the simple Y = X + B equation for the architected to

physical register assignment (different B’s for extended and

base register sets), architected register indices have to stay

within their boundaries during the release state. The compiler

must therefore ensure that none of the extended register set

members contain live values when the extended register set

is released. We essentially need a mechanism to compact the

architected register indices for the duration the extended set

is not acquired, and also right before releasing the extended

register set.

To achieve this goal, the compiler may have to move

any live values in the extended register set to available

registers in the base set during the release state and before

releasing the extended register set. For example, let us assume

a scenario where the base register set size is 6 and a warp

has a live register set {2, 4, 5, 9} right before the release.

Before releasing the extended set, the compiler has to move

architected register 9 to one of 0, 1, or 3 locations. Note

that the movement of architected registers is instrumented by

the compiler (usually with MOV operations). This is similar

to what [7] suggests under the name of register declaration
reordering but it is different in that index compaction may

happen multiple times right before each release by moving

the architected registers, whereas in register declaration
reordering the index minimization is limited to happen only

once by reordering register declarations. In addition, the

compiler has to apply register location renaming for all the

uses of that particular register until the end of its current live

range. We use a similar analysis to that done in Section III-A1

for those registers exceeding the boundary at release states.

We emphasize that the above compiler analysis steps, when

embedded within a compiler, need to be applied during the

last stages of the compilation chain. This is because the

technique needs to know the architected register assignment

whereas compiler middle-ends such as LLVM work with

virtual registers in SSA form.

B. Architecture Support

In this section, we explain the architectural requirements

to enable RegMutex. We used the baseline design offered by

GPGPU-sim [10], a simplified depiction of which is shown at

the top of Figure 4. After decoding acquire/release primitive

at the decode stage as a barrier operation, the acquire or

releases command is given to the issue stage. At this stage,

the warp acquires the extended set or waits for an extended

FFetch I-Cache Decode

Scoreboard

I-Buffer

Issue
Operand

Collector

ALU

MEM

Nw

WarpxStatusxBitmask

Nw

SRPxBitmask

Nw

ceil(log2(Nw))

LUT

Figure 4. The baseline design from GPGPU-sim [10] (top) and RegMutex’s
added storage structures (bottom). Specified sizes are in bits.

set to be freed, or releases its extended set. Upon a successful

acquire, the information for the acquired SRP section as the

extended set is passed to the Operand Collector Unit for

register mapping. Below we elaborate upon the hardware

implementation of RegMutex at these two stages.

1) Warp Issue Management Organization: In RegMutex a

warp has to ask for physical registers for its extended set upon

reaching an acquire instruction. If no physical extended set

is available, the warp has to wait for another warp to release
their set. The warp needs to essentially imitate the behavior of

already existing barrier synchronization and communication

in GPUs. CUDA barrier synchronization instructions allow

one warp Wa to signal its arrival to another warp Wb, and to

warp Wb to wait for warp Wa to arrive at a particular barrier.

These instructions have been used for warp specialization

purposes and implementing producer-consumer models [17],

[18] via PTX instructions bar.sync and bar.arrive.

For RegMutex, we exploit a similar design where warps

have to wait for the release of an extended physical set

when faced with acquire or signal the release of their own

extended physical set upon a release. Since barrier operations

in SM are executed at the issue stage, we design RegMutex’s

allocation logic closely coupled with it.

The highlighted section of Figure 4 shows the RegMutex’s

modification interacting mostly with the issue stage of the

microarchitecture model. Because we need to keep track

of each warp’s execution mode (acquired or not-acquired),

we use a single bit per warp to indicate the warp status.

In the baseline model, each SM can host up to 48 resident

warps (Nw = 48) and therefore the warp status bitmask is

48 bits long. This bitmask is indexed by the warp index

within the SM. In addition, another bitmask holds the status

of sections of the Shared Register Pool (SRP). Since there

can be up to Nw sections in the SRP, and since we disallow

nested acquires and releases, the SRP bitmask is Nw bits

long as well. Each bit in SRP bitmask indicates if a particular

extended physical register set is acquired or not. The mapping

between a warp and a bit in the SRP bitmask is performed

via a lookup table (LUT in Figure 4). The table has one

entry for each warp while each entry contains �log2 Nw�
bits indicating which one of the Nw SRP sections the warp

821

SRP Bitmask Warp Status BitmaskLUT

11

3

2

loc=FFZ(SRP)

Set(Widx)LUT[Widx]=loc

Wait

(a) Acquire.

Warp Status Bitmask SRP BitmaskLUT

11 2 3

Unset(Widx) srpidx = LUT[Widx] Unset(srpidx)

(b) Release.

Figure 5. Acquire/release procedure implementation in RegMutex.

has acquired (if warp’s status bit is set). The total size for

this table in our baseline is therefore 48× 6 = 288 bits.

As depicted in Figure 5(a), when an acquire instruction

reaches the issue stage, SRP bitmask is searched for an unset

(zero) bit. This is equivalent of the Find First Zero (FFZ)

operation on the SRP bitmask which returns the index of

the least significant zero bit. If a valid index (for instance,

0 <= idx < 48 in the baseline model) is returned, a section

is available. Therefore, the index is written into the lookup

table and the warp’s status bit and the SRP availability bit

are set. This index is then passed to the Operand Collector

Unit. However, if the returned index is invalid, the warp

waits at the barrier and retries at later rounds when the warp

gets scheduled again. Moreover, when a release instruction

arrives at the issue stage, the warp status bit is unset, and

the warp’s acquired SRP section index is retrieved from the

lookup table, as shown in Figure 5(b). This index determines

the bit to unset in the SRP bitmask, specifying the release

of the previously acquired extended physical register set.

Also, note that in case the extended register set size does not

allow having maximum number of SRP sections, those bits

in SRP bitmask that do not correspond to any SRP section

are set at the beginning of the kernel placement and stay

intact throughout the execution.

Total number of bits introduced into the baseline by

RegMutex is 384. Compared to register file virtualization

approach [3], which requires 30, 240 bits for the renaming

table and 1024 bits for register availability indication (exclud-

ing Release Flag Cache), RegMutex reduces the additional

structure storage cost by more than 81x. Moreover, since the

introduced acquire/release instruction is simple, RegMutex

does not need to use meta-instructions, as opposed to [3],

which necessitates partitioning the fetch stage into two

separate stages.

2) Architected-To-Physical Register Mapping: In GPUs

registers are allocated per warp and indexed by the warp ID

within SM. For instance, the baseline design from GPGPU-

+

�

YXWidxCoeff

(a) Baseline.

+ YX

M
U

X

>

|Bs|

�

Widx

+

�

SRPoffsetLUT(Widx) |Es|

(b) Augmented for RegMutex.

Figure 6. Architected to physical register mapping design in the Operand
Collector Unit. X is the architected register index and Y is the resulted
physical register index.

sim [10] is from Nvidia Fermi architecture containing 32K

32-bit physical registers. Given there are 32 threads within

the warp, there are 1K of physical register packs to distribute

among the warps. As we mentioned earlier, to map packs

of architected registers to physical registers GPUs use a

simple equation Y = X +B. In this equation, B is a warp

specific base address assigned at run time and is resulted

from multiplying the warp index within SM (Widx) with a

constant coefficient (Coeff) determined by the kernel’s total

register usage: B = Coeff × Widx. This baseline design

can be viewed in Figure 6(a) and is implemented within

GPU’s Operand Collector unit before accessing the register

file banks.

To support RegMutex, we augment the baseline design as

shown in Figure 6(b). Since the base addresses for physical

registers designated to hold Bs and Es of a warp are disjoint,

the warp compares the architected register index with |Bs|
to realize if the register belongs to the base set or the

extended set. If the register belongs to the base set, in a

fashion similar to baseline, the warp index within SM gets

multiplied to |Bs| to result the base address for the physical

register. Otherwise, the SRP section assigned to the warp

(LUT (Widx)) is multiplied by |Es| to get the base address

within SRP. The result is added with SRPoffset, the offset

of SRP within register file, to constitute the physical base

address for the register. In this design, the values of |Bs| and

|Es| are supplied by the compiler and alongside SRPoffset

are given to the Operand Collector Unit at the kernel launch.

In summary, RegMutex enjoys a much simpler design

compared to existing approaches such as [3] and [5] which

micromanage the allocation of every register and necessitate

additional structures such as Release Flag Cache.

C. Paired-Warps Specialization

In this part, we introduce a specialization of RegMutex

that, rather than time-multiplexing the registers across all the

SM’s resident warps, shares the extended register set between

specific pairs of warp. Although this approach reduces the

register sharing opportunity, it lowers the amount of hardware

modifications even further. In this specialization, the design

sets aside 2× |Bs|+ |Es| physical registers for each pair of

warps. Each warp’s |Bs| allocation is static and exclusive but

Es is time-multiplexed between the two. Therefore, while

both warps can move forward in release state, only one

822

of them may progress in the acquire state, disallowing the

other warp to acquire Es until the release point. Paired-

warps specialization of RegMutex eliminates the need for

the lookup table and the SRP bitmask, and only requires a

bitmask with the length half the maximum number of warps

in the SM, i.e., Nw/2, to specify the status of the extended

set shared between pairs of warps.

IV. EXPERIMENTAL EVALUATION

To evaluate RegMutex’s performance, we extended

GPGPU-Sim v 3.2.2 [10] simulator. We used the microarchi-

tecture specifications for GeForce GTX480 GPU that comes

with the simulation framework. It includes 15 SMs, 128 KB

register file size per SM, 2 warp schedulers per SM, and

the default greedy-then-oldest scheduling policy. In addition

to the register file size in SM, we allow shared memory

usage per SM and the maximum number of resident threads

in SM to act as other constraints that affect the theoretical

occupancy of the CUDA kernels. Note that although we carry

out our simulations based on an Nvidia Fermi GPU, the

principles behind register allocation on newer Nvidia CUDA-

enabled architectures including Kepler, Maxwell, Pascal,

and Volta have stayed the same: registers are still statically

and exclusively reserved. Therefore, the resulting register

file underutilization challenge does indeed still exist. Even

though per-SM register file size has been doubled in newer

architectures, the maximum number of resident warps on

the SM in newer GPUs is also increased. As a result, in all

post-Fermi Nvidia GPUs having more than 32 registers per

thread definitely results in incomplete occupancy, which is

troubling for applications with high register demand. Hence,

our solution is applicable and generalizable to newer GPU

architectures as well.

We utilized PTXPlus to extract basic block information

as well as control flow analysis in order to implement

RegMutex’s compiler support. PTXPlus is a tool integrated

with GPGPU-Sim that enables implementation of compiler

optimizations when working with the simulator. It uses an

augmented form of PTX intermediate representation that

is extracted from the binary, and therefore is expected to

fully preserve the optimizations applied at the PTX-to-SASS

level. PTXPlus is the closest level to machine code that

GPGPU-Sim allows for applying compiler optimizations.

We selected a total of 16 applications from Rodinia [11],

Parboil Benchmark Suite [12], and Nvidia CUDA SDK [19]

to verify the effectiveness of RegMutex under different

workloads. These applications are shown in Table I and

exhibit different SM resource requirements. Please note

that these workloads suffer from high register usage and

are selected to show the benefits of RegMutex in different

scenarios. Applications that do not have such property are

not affected by applying our technique since RegMutex

evaluates all the registers as the members of the base

register set, therefore, it does not insert any acquire or

Application # Regs. |Bs| Application # Regs. |Bs|
BFS 21 (24) 18 Gaussian 12 (12) 8
CUTCP 25 (28) 20 HeatWall 28 (28) 20
DWT2D 44 (44) 38 LavaMD 37 (40) 28
HotSpot3D 32 (32) 24 MergeSort 15 (16) 12
MRI-Q 21 (24) 18 MonteCarlo 13 (16) 12
ParticleFilter 32 (32) 20 SPMV 16 (16) 12
RadixSort 33 (36) 30 SRAD 18 (20) 12
SAD 30 (32) 20 TPACF 28 (28) 20

Table I
WORKLOADS USED IN EXPERIMENTS. THE NUMBER OF REGISTERS PER

THREAD AND REGMUTEX’S BASE REGISTER SET SIZE ARE SHOWN FOR

EACH KERNEL.

release instructions into the program. Moreover, none of

the presented workloads incur simultaneously executing

dissimilar kernels. Co-scheduling dissimilar kernels on an

SM is not supported by our technique and results in falling

back to the default execution mode (zero-sized extended

set). Table I also specifies the number of registers per thread

for each kernel. The numbers in the parenthesis show the

number of registers rounded to the upper multiple of 4.

The simulation framework uses this number for resource

allocation calculations. We also showed the calculated base

set size for RegMutex for each application in the table. All

the applications are compiled with NVCC 4.0 and GCC 4.6

with -O3 compilation flag. Since PTXPlus is not compatible

with CUDA Compute Capability 2.0 or higher, applications

are compiled for Compute Capability 1.3.

A. Kernel Occupancy Boost Analysis

We first analyze the performance improvement enabled

by RegMutex for 8 GPU kernels from Table I on the

baseline architecture. The theoretical occupancy of this set

of kernels are limited by the excessive register demand,

hence, enhancing their occupancy by time-sharing a portion

of the registers using RegMutex can be beneficial. For these

applications, Figure 7 shows the percentage of execution

cycle reduction with RegMutex calculated with respect to

the number of baseline execution cycles. It also shows

the influence of RegMutex on the theoretical occupancy

of the kernel by plotting the initial occupancy of the

kernels alongside the occupancy with RegMutex. On average,

RegMutex has reduced the execution cycle of the kernels by

13% via enhancing the overall register file utilization.

In a case such as BFS, the boost in the occupancy resulted

in 23% reduction in the execution cycles. On the other

hand, SAD application does not enjoy such performance

improvement with the same amount of occupancy enhance-

ment. This tells us that theoretical occupancy cannot be

directly indicative of the performance enabled by RegMutex,

yet, is one of the contributing factors. In the case of BFS

and SAD, extended set size and SRP section are other

impactful parameters. SAD requires a considerably larger

extended set compared to BFS (see Table I) for the occupancy

increase. This makes the number of SRP sections limited

which increases the contention over acquiring the extended

823

0%

20%

40%

60%

80%

100%

0%

5%

10%

15%

20%

25%

O
c
c
u

p
a
n

c
y

E
x
e
c
.
C

y
c
le

 R
e
d

u
c
ti

o
n

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

Exec. Cycle Red. Init. Occupancy Occupancy with RegMutex

Figure 7. The performance improvement enabled by RegMutex over the
baseline.

set between warps. DWT2D and ParticleFilter applications

suffer from the same issue as well. Program nature is another

contributing factor to the performance improvement provided

by RegMutex. A kernel that holds an extended set more

often and for longer instructions increases the chance of

other warps having to wait at acquire points. The contribution

extent for all these parameters depend on each other, and

most importantly, for typical kernels that are data-driven,

to the input of the kernel. Therefore, speculating suitable

parameters using heuristics requires careful analysis of the

program.

B. Register File Size Reduction Analysis

In this part, we analyze the effect of RegMutex on 8

applications for which the register file size is not limiting

the theoretical occupancy. For these applications, similar to

GPU-Shrink [3], we halve the register file size of the baseline

to 64 KB per SM and see the effect of this reduction with and

without RegMutex and compare it with the baseline mode.

Jeon et al. [3] argue that this design leads to significant power

savings by reducing the register file dynamic and overall

power consumption by 20% and 30% respectively. Note that

unlike GPU-Shrink we did not enforce register spilling, but

rather allowed GPU to determine the number of resident

warps on SM under specified circumstances.

Figure 8 compares the execution cycle for scenarios where

RegMutex is present and absent with the kernel’s number of

execution cycles for the architecture with full register file. It is

evident that in presence of RegMutex, the kernel experiences

much less increase in the number of execution cycles and

allows the kernels to preserve the performance when an

architecture with smaller number of physical registers is

provided. For the applications in Figure 8, while the design

without RegMutex suffers from 23% increase in the number

of execution cycles on average, with RegMutex we observe

an average of 9% growth in the number of execution cycles.

We also plotted the occupancy of the kernels before

and after applying RegMutex on the architecture with half

the baseline’s physical registers in Figure 8. Similar to

0%

20%

40%

60%

80%

100%

0%

10%

20%

30%

40%

O
c
c
u

p
a
n

c
y

E
x
e
c
.
C

y
c
le

 I
n

c
re

a
se

 (
lo

w
e
r

is
 b

e
tt

e
r)

Exec. Cycle Increase RegMutex Exec. Cycle Increase

Init. Occupancy Occupancy with RegMutex

Figure 8. The performance of applications with and without RegMutex
on an architecture with half the baseline’s register file size.

previous part, we observe that occupancy is a contributing

factor to RegMutex’s performance. In 7 out of these 8

applications RegMutex has successfully increased the register

utilization by enhancing the occupancy of the kernel. It is

only in MergeSort workload that our heuristic for extended

register set size determination comes up with a size that

does not increase the occupancy. Therefore, we observed no

benefit, but a slight increase in execution cycle due to added

RegMutex instructions. This is, in fact, the only workload

among 16 applications for which the default RegMutex

incurred slowdown.

C. Performance Comparison with Related Work

In this section, we compare performance improvement

provided by RegMutex with the two most closely related

approaches: i) Resource Sharing with the Owner Warp First
(OWF) scheduling optimization [7], and ii) Register File
Virtualization (RFV) [3]. To perform an apples-to-apples

comparison, we used implementations of both approaches

on GPGPU-Sim similar to the extensions used to implement

RegMutex. Figure 9(a) presents the results of the comparison

on the baseline architecture. The average reduction in

kernel execution time in cycles is 1.9%, 16.2%, and 12.8%

for OWF, RFV, and RegMutex respectively. We see that

both RFV and RegMutex significantly out-perform OWF.

While the improvement due to RFV is 3.4% higher than

that of RegMutex on average, RegMutex has much lower

hardware implementation complexity than RFV, as discussed

in Section III-B. RVF demands more than 31 kilobits for

additional structure storage in the default architecture with

128 KB registers, whereas RegMutex only needs 384 bits,

reducing the storage requirement by more than 81x.

We also perform this comparison on the architecture with

half the baseline’s register file size. The results are shown

in Figure 9(b). We observe an average of 22.9% increase in

execution cycles that results from halving the register file size

when no technique is applied. The average increase in kernel

execution cycles is 20.6%, 5.9%, and 10.8% for OWF, RFV,

and RegMutex respectively. Again, we see that both RFV

824

0%

5%

10%

15%

20%

25%

30%

35%

E
x
e
c
.
C

y
c
le

 R
e
d

u
c
ti

o
n

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

OWF RFV RegMutex

(a) On the baseline architecture.

0%

10%

20%

30%

40%

E
x
e
c
.
C

y
c
le

 I
n

c
re

a
se

 (
lo

w
e
r

is
 b

e
tt

e
r)

No Technique OWF RFV RegMutex

(b) With half the baseline architecture’s registers.

Figure 9. RegMutex performance comparison with Register File Virtual-
ization (RFV) [3] and the work of Jatala et al. [7], which we refer to it as
OWF.

-10%

-5%

0%

5%

10%

15%

20%

25%

E
x
e
c
.
C

y
c
le

 R
e
d

u
c
ti

o
n

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

|Es|=2 |Es|=4 |Es|=6 |Es|=8 |Es|=10 |Es|=12

Figure 10. The sensitivity of kernel performance to variations in the
extended set size with RegMutex. Columns with diagonal stripes are our
heuristic’s pick.

and RegMutex significantly out-perform OWF in this case

as well, and that RFV performs better than RegMutex, but

does so with increased hardware implementation complexity

(as discussed in Section III-B).

D. Extended Set Size Sensitivity Analysis

Here we analyze the performance sensitivity of our

technique to the size of the extended set. In Section III-A2

40%

60%

80%

100%

O
c
c
u

p
a
n

c
y

|Es|=2 |Es|=4 |Es|=6 |Es|=8 |Es|=10 |Es|=12

(a) Theoretical occupancy.

40%

60%

80%

100%

S
u

c
c
e
ss

fu
l
A

c
q
u

ir
e
s

|Es|=2 |Es|=4 |Es|=6 |Es|=8 |Es|=10 |Es|=12

(b) Successful acquires among all acquire instructions.

Figure 11. The variations in the theoretical kernel occupancy and the
ratio of successful acquires with respect to changes in the extended set size.
Columns with diagonal stripes are our heuristic’s pick.

we mentioned that the size of the extended set, i.e., |Es|,
which is chosen at compile time, affects the performance in

two ways. Increasing |Es| results in |Bs| decreasing which

allows more concurrent warps to reside on the SM thus

enhancing the occupancy. On the other hand, a higher |Es|
means larger sections of a program are marked as acquire

state therefore it is more probable for warps to be holding

extended sets, hence, warps may have to wait more often and

for longer times before they can acquire physical registers

for their extended set.

To observe the influence of extended set size on the

performance of kernels, we manually set |Es| to 2, 4, 6,

8, 10, and 12, and observed the execution cycle reductions.

Figure 10 plots the results. We distinguished the extended set

size determined by our heuristic (described in Section III-A2)

using diagonal stripes. As you can see, although the best

performing |Es| differs from one application to another and

does not follow any particular trend, our method has been

able to pick the best or one of the best extended set sizes for

each application. This is due to prioritizing occupancy and

then adjusting it based on the number of sections in SRP.

To further investigate the results, for different |Es|’s, we

measured the theoretical occupancy of each kernel and the

percentage of successful acquire requests with respect to all

acquire instructions executed and plotted them in Figure 11(a)

and Figure 11(b). By comparing the results in these plots, it

becomes clear that as |Es| gets larger, occupancy increases

825

0%

20%

40%

60%

80%

100%

-5%

5%

15%

25%

35%

45%

O
c
c
u

p
a
n

c
y

E
x
e
c
.

C
y
c
le

 R
e
d

u
c
ti

o
n

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

Exec. Cycle Reduction Occupancy

(a) Execution cycle reduction is measured against the baseline architecture.

0%

20%

40%

60%

80%

100%

0%

10%

20%

30%

40%

50%

O
c
c
u

p
a
n

c
y

E
x
e
c
.
C

y
c
le

 I
n

c
re

a
se

 (
lo

w
e
r

is
 b

e
tt

e
r)

Exec. Cycle Increase Occupancy

(b) Execution cycle is measured for the architecture with half the baseline
physical registers. To be consistent with previous plots, the increase is
measured against the baseline kernel performance on the architecture with
full register file.

Figure 12. The effect of RegMutex’s paired-warps specialization on the
execution cycle and the occupancy of kernels.

but the chance of a successful acquire usually reduces. Both

of these two adversarial effects contribute to RegMutex’s

performance. This makes suitable |Es| selection a challenging

task that requires careful observation of the program behavior

as well as static calculation of the kernel occupancy in the

given architecture.

E. Paired-Warps Specialization Performance Analysis

As we mentioned earlier in Section III-C, paired-warps

specialization of RegMutex eliminates the need for the SRP

bitmask and the lookup table by privatizing SRP sections

among pairs of warps. This reduces the hardware storage cost

by more than 20x compared to the non-specialized RegMutex

at the expense of lower generality. Figure 12(a) shows

the execution cycle reduction and the resulted theoretical

occupancy after applying paired-warps RegMutex to the

baseline architecture. As can be derived by comparing this

figure with Figure 7, this specialization is effective when

the occupancy can be improved, as is the case for 5 of

our 8 applications. For a few applications such as SAD,

we observe even a higher reduction in execution cycles

compared to the default RegMutex. We found that this is

generally due to higher probability of acquires with this

50%

60%

70%

80%

90%

100%

B
F

S

C
U

T
C

P

D
W

T
2
D

H
O

T
S
P

O
T

3
D

M
R

I-
Q

P
a
rt

ic
le

F
il

te
r

R
a
d

ix
S
o

rt

S
A

D

G
a
u

ss
ia

n

H
e
a
rt

W
a
ll

L
a
v
a
M

D

M
e
rg

e
S
o
rt

M
o
n

te
C

a
rl

o

S
P

M
V

S
R

A
D

T
P

A
C

F

S
u

c
c
e
ss

fu
l

A
c
q

u
ir

e
s

No Specialization With Paired-Warps Specialization

Figure 13. Acquire instruction success rate in RegMutex with and without
paired-warps specialization. The results for the 8 leftmost applications are
reported on the baseline architecture, and the rest, on the architecture with
half of the baseline register file size.

specialization, as shown in Figure 13. While paired-warps

specialization guarantees the exclusive access to the extended

set for a warp be shared with at most one other warp, default

RegMutex may have to share a few SRP sections among

many resident warps on SM. This can lead to an increased

waiting time on acquire instructions for the default mode.

However, when the occupancy stays intact, paired-warps

specialization is unable to improve the performance. The

inability to improve the occupancy in such cases stems from

the guarantee this specialization has to provide for pairs of

warps. This makes paired-warps specialization susceptible for

such scenarios while the default mode exhibits flexibility and

therefore resistance in these cases. In other words, exclusivity

of 2 × |Bs| + |Es| registers for pairs of warps makes the

specialization outperform or underperform the default mode

depending on the application. On average, paired-warps

specialization reduces the execution cycles for applications

in Figure 12(a) by 8% which is 4% less compared to the

default mode.

Figure 12(b) illustrates the increase in the execution

cycles as well as the resulted occupancy when paired-warps

specialization is used on the architecture with half the baseline

physical registers. Here we observe the similar phenomenon

as we described above as well. When the occupancy stays

the same, as it is the case for 4 out of 8 applications, no

performance improvement is provided. However, in other

cases where the occupancy could be increased, paired-warps

specialization becomes effective. For these applications, this

specialization has increased the execution cycles over the

baseline with full register file by 17% which is 5% less than

the baseline with half the register file but it is outperformed

by the default RegMutex by 8% difference.

V. RELATED WORK

As we explained earlier in Section II, a number of directly

related works propose solutions for static and exclusive GPU

register assignment. Tarjan et al. [5] suggest virtualizing

826

the registers and assigning them onto physical registers on-

demand. However, this method is expected to incur hardware

complexities even beyond what was proposed by Jeon et
al. [3]. Gebhart et al. [6], [20] propose multi-level register file

designs where long-lived registers and short-lived registers

are placed in different register hierarchies for power efficiency

purposes. While imposing high amount of modifications to

the existing hardware, these solutions also lack generality

due to the fixed sizes of the register file hierarchy levels.

RegMutex, in contrast, does not disturb the performance of

an application that does not utilize it. Tan and Fu [21] suggest

another hierarchical approach where registers are classified

into fast and slow categories to reduce susceptibility of

GPU register file to process variation. However, RegMutex’s

aim is to offer approximately the same performance at a

lower cost, or higher performance at the same cost, by

reducing the number of required registers or by allowing

residence of more warps on an SM. Also, as opposed

to the work by Jatala et al. [7], RegMutex offloads the

register ownership arbitration to the compiler and allows the

set of shared registers be handed over between the warps

multiple times. Zorua [22] is another work that utilizes a

runtime-compiler-hardware synergistic approach for resource

virtualization at runtime. While in Zorua, performance

portability across multiple architectures is the goal and is

achieved via virtualizing on-chip resources, RegMutex tackles

the challenge of static resource assignment during the kernel

execution. RegLess [23] replaces register file with a smaller

actively-managed staging unit and LTRF [24] suggests a

hierarchical RF design, both utilizing the compiler to provide

hints to the hardware for the run-time use. Unlike these

works, RegMutex does not fundamentally change or replace

the RF structure, and can easily be disabled or enabled by the

compiler. A patent application by Coon and Lindholm [25]

also has the notion of grouping threads together based on

resource sharing; however, they only allow one thread from

each group to execute at a time while our goal is to maximize

concurrent execution while sharing a limited resource.

Another body of papers, orthogonal to RegMutex, target

economical use of GPU’s available resources. Kim et al. [26]

utilized unused registers for executing the warps in a special

mode called pre-execution in order to cope with long stalls

due to memory accesses. Warped-Compression [27] exploits

the similarity of the register values between threads within a

warp during the execution in order to eliminate redundant

register file occupations. Compressing similar registers into

one register essentially results in saving on the GPU register

file power consumption. It also resembles the works of

Jourdan et al. [28] for CPUs where logical registers are

mapped into physical ones when sharing the same content.

KernelMerge [29] aims to allow co-residency of two GPU

kernels on one device to enables utilization of resources that

are left unutilized when only one of the kernels is running.

CCC [30] utilizes on-chip shared memory to collect tasks

for future warp-efficient use. Also, Yoon et al. [31] propose

an architecture to increase the on-chip resource utilization

by improving the CTA scheduling policy. While sharing the

same general goal with RegMutex, we observe no restriction

on simultaneous application of these works with our proposed

technique.

In the CPU realm, hardware-only approaches [32], [33] as

well as combined compiler-microarchitecture solutions [34],

[35], [36] have been proposed for quick dead register

identification and release. Ayala et al. [37] suggest a software-

hardware technique that tags sections of the program which

require only a small amount of registers for execution

and allows disabling regions of the register file during the

execution for energy saving purposes. As we mentioned

before, such techniques in massively multi-threaded devices

such as GPUs are often impractical due to the their heavy

reliance on TLP between resident warps.

VI. CONCLUSION

Static and exclusive register allocation on GPUs leads to

register file underutilization. In this work, we addressed this

challenge by introducing RegMutex, an effective synergistic

compiler-microarchitecture mechanism to time-multiplex the

register use between warps. On the compiler side, RegMutex

divides the architected register set into a base register set and

an extended register set, and by analyzing the program, injects

instructions in the kernel code where the extended register

set activates and deactivates. On the microarchitectural side,

while physical registers are allocated to the base architected

registers for the lifetime of the kernel, RegMutex takes

a communal approach on allocating physical registers to

the extended architected register set. Using the information

provided by the compiler, the warp acquires the physical

registers for extended architected registers from a shared

register pool when needed, and releases them to the shared

pool upon deactivation of the extended register set. We

showed that this approach enhances the performance of

GPU kernels exhibiting a limited occupancy due to high

register pressure, and allows application resilience when

underlying microarchitecture employs a smaller register file.

Our experiments show that RegMutex reduces the number

of kernel execution cycles by up to 23% through increasing

the overall register utilization.

ACKNOWLEDGMENT

We would like to thank Sudhakar Yalamanchili and

Sana Damani for giving constructive feedback prior to

submission. We thank anonymous reviewers for providing

useful comments. This work is supported by National Science

Foundation collaborative Grants No. 1629564 and 1629459.

AMD, the AMD Arrow logo, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. Other product

names used in this publication are for identification purposes

only and may be trademarks of their respective companies.

827

REFERENCES

[1] J. Tan, S. L. Song, K. Yan, X. Fu, A. Marquez, and
D. Kerbyson, “Combating the reliability challenge of gpu
register file at low supply voltage,” in PACT, 2016.

[2] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim,
T. M. Aamodt, and V. J. Reddi, “Gpuwattch: Enabling energy
optimizations in gpgpus,” in ISCA, 2013.

[3] H. Jeon, G. S. Ravi, N. S. Kim, and M. Annavaram, “Gpu
register file virtualization,” in MICRO, 2015.

[4] N. Jing, J. Wang, F. Fan, W. Yu, L. Jiang, C. Li, and X. Liang,
“Cache-emulated register file: An integrated on-chip memory
architecture for high performance gpgpus,” in MICRO, 2016.

[5] D. Tarjan and K. Skadron, “On demand register allocation
and deallocation for a multithreaded processor,” Jun. 30
2011, uS Patent App. 12/649,238. [Online]. Available:
https://www.google.com/patents/US20110161616

[6] M. Gebhart, S. W. Keckler, and W. J. Dally, “A compile-time
managed multi-level register file hierarchy,” in MICRO, 2011.

[7] V. Jatala, J. Anantpur, and A. Karkare, “Improving gpu
performance through resource sharing,” in HPDC, 2016.

[8] N. Jayasena, M. Erez, J. H. Ahn, and W. J. Dally, “Stream
register files with indexed access,” in HPCA, 2004.

[9] H. Kim, R. Vuduc, S. Baghsorkhi, J. Choi, and W.-m. Hwu,
“Performance analysis and tuning for general purpose graphics
processing units (gpgpu),” Synthesis Lectures on Computer
Architecture, vol. 7, no. 2, pp. 1–96, 2012.

[10] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing cuda workloads using a detailed gpu
simulator,” in ISPASS, 2009.

[11] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron, “Rodinia: A benchmark suite for
heterogeneous computing,” in IISWC, 2009.

[12] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput com-
puting,” Center for Reliable and High-Performance Computing,
vol. 127, 2012.

[13] “Nvidia tesla v100 gpu architecture whitepaper,” http://
www.nvidia.com/object/volta-architecture-whitepaper.html, ac-
cessed: 2017-08-11.

[14] V. Volkov, “Better performance at lower occupancy,” in
Proceedings of the GPU technology conference, GTC, vol. 10,
2010.

[15] K. Cooper and L. Torczon, Engineering a compiler. Elsevier,
2011.

[16] “nvdisasm cuda binary tool,” http://docs.nvidia.com/cuda/cuda-
binary-utilities/#nvdisasm, accessed: 2017-08-11.

[17] M. Bauer, H. Cook, and B. Khailany, “Cudadma: Optimizing
gpu memory bandwidth via warp specialization,” in SC, 2011.

[18] M. Bauer, S. Treichler, and A. Aiken, “Singe: Leveraging
warp specialization for high performance on gpus,” in PPoPP,
2014.

[19] “Cuda computing sdk 4.2,” https://developer.nvidia.com/cuda-
toolkit-42-archive, accessed: 2017-08-11.

[20] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J.
Dally, E. Lindholm, and K. Skadron, “Energy-efficient mech-
anisms for managing thread context in throughput processors,”
in ISCA, 2011.

[21] J. Tan and X. Fu, “Mitigating the susceptibility of gpgpus
register file to process variations,” in IPDPS, 2015.

[22] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan,
A. Shrestha, S. Ghose, A. Jog, P. B. Gibbons, and O. Mutlu,
“Zorua: A holistic approach to resource virtualization in gpus,”
in MICRO, 2016.

[23] J. Kloosterman, J. Beaumont, D. A. Jamshidi, J. Bailey,
T. Mudge, and S. Mahlke, “Regless: Just-in-time operand
staging for gpus,” in MICRO, 2017.

[24] M. Sadrosadati, A. Mirhosseini, S. B. Ehsani, H. Sarbazi-
Azad, M. Drumond, B. Falsaf, R. Ausavarungnirun, and
O. Mutlu, “Ltrf: Enabling high-capacity register files for gpus
via hardware/software cooperative register prefetching,” in
ASPLOS, 2018.

[25] B. Coon and J. Lindholm, “System and method for
grouping execution threads,” Jul. 21 2007. [Online]. Available:
https://www.google.com/patents/US20070143582

[26] K. Kim, S. Lee, M. K. Yoon, G. Koo, W. W. Ro, and
M. Annavaram, “Warped-preexecution: A gpu pre-execution
approach for improving latency hiding,” in HPCA, 2016.

[27] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. An-
navaram, “Warped-compression: Enabling power efficient gpus
through register compression,” in ISCA, 2015.

[28] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz,
“A novel renaming scheme to exploit value temporal locality
through physical register reuse and unification,” in MICRO,
1998.

[29] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, “Fine-
grained resource sharing for concurrent gpgpu kernels,” in
Presented as part of the 4th USENIX Workshop on Hot Topics
in Parallelism, 2012.

[30] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Efficient warp
execution in presence of divergence with collaborative context
collection,” in MICRO, 2015.

[31] M. K. Yoon, K. Kim, S. Lee, W. W. Ro, and M. Annavaram,
“Virtual thread: Maximizing thread-level parallelism beyond
gpu scheduling limit,” in ISCA, 2016.

[32] M. Moudgill, K. Pingali, and S. Vassiliadis, “Register renaming
and dynamic speculation: An alternative approach,” in MICRO,
1993.

[33] J. F. Martinez, J. Renau, M. C. Huang, and M. Prvulovic,
“Cherry: Checkpointed early resource recycling in out-of-order
microprocessors,” in MICRO, 2002.

[34] M. M. Martin, A. Roth, and C. N. Fischer, “Exploiting dead
value information,” in MICRO, 1997.

[35] J. L. Lo, S. S. Parekh, S. J. Eggers, H. M. Levy, and
D. M. Tullsen, “Software-directed register deallocation for
simultaneous multithreaded processors,” IEEE Transactions
on Parallel and Distributed Systems, vol. 10, no. 9, 1999.

[36] T. M. Jones, M. F. R. O’Boyle, J. Abella, A. Gonzalez, and
O. Ergin, “Compiler directed early register release,” in PACT,
2005.

[37] J. L. Ayala, A. Veidenbaum, and M. López-Vallejo, “Power-
aware compilation for register file energy reduction,” Inter-
national Journal of Parallel Programming, vol. 31, no. 6,
2003.

828

